• 제목/요약/키워드: GABA shunt

검색결과 13건 처리시간 0.016초

Inactivation of Brain Succinic Semialdehyde Reductase by o-Phthalaldehyde

  • Song, M.S.;Lee, B.R.;Jang, S.H.;Cho, S.W.;Park, S.Y.
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1995년도 춘계학술대회
    • /
    • pp.75-75
    • /
    • 1995
  • Succinic semialdehyde reductase, one of key enzyme of GABA shunt in CNS, is inactivated by o-phthalaldehyde, The inactivation followed pseudo first-order kinetics, and the second-order rate constant for the inactivation process was 28 M$\^$-1/s$\^$-1/ at pH 7.4 and 25$^{\circ}C$. The absorption spectrum(λ$\_$max/=377nm), fluorescence exitation(λ$\_$max/=340nm) and fluorescence emission spectra (λ$\_$max/=409nm) were consistent with the formation of an isoindole derivative in the catalytic site between a cysteine and a lysine residues about 3${\AA}$ apart. The substrate, succinic semialdehyde, did not protect the enzymatic activity against inactivation, whereas the coenzyme, NADPH, protected against o-phthalaldehyde induced inactivation of the enzyme. About 1 isoindole group per moi of the enzyme was formed following complete loss of the enzymatic activity. These results suggest that the amino acid residues of the enzyme participating in reaction with o-phthalaldehyde more likely residues at or near the coenzyme binding site.

  • PDF

Chemical Modification of Tryptophan Residue in Bovine Brain succinic Semlaldehyde Reductase

  • 홍정우;전성규;반재훈;박진수;권혁일;조성우;최수영
    • Animal cells and systems
    • /
    • 제1권4호
    • /
    • pp.583-587
    • /
    • 1997
  • Incubation of an NADPH-dependent succinic semialdehyde reductase from bovine brain with N-bromosuccinimide (NBS) resulted in a time-dependent loss of enzyme activity. The inactivation followed pseudo-first-order kinetics with the second-order rate constant of $6.8\times{10}^3$ $M^-1$ $min^{-1}$. The inactivation was prevented by preincubation of the enzyme with substrate succinic semialdehyde, but not with coenzyme NADPH. There was a linear relation-ship between oxindole formation and the loss of enzyme activity. Spectro-photometric studies indicated that about one oxindole group per molecule of the enzyme was formed following complete loss of enzymatic activity. It is suggested that the catalytic function of succinic semialdehyde reductase is modulated by binding of NBS to a specific tryptophan residue at or near the substrate binding site of the enzyme.

  • PDF

Inactivation of Brain Succinic Semialdehyde Reductase by o-Phthalaldehyde

  • Choi, Soo-Young;Song, Min-Sun;Lee, Byung-Ryong;Jang, Sang-Ho;Lee, Su-Jin;Park, Jin-Seu;Choe, Joon-Ho;Cho, Sung-Woo
    • BMB Reports
    • /
    • 제28권2호
    • /
    • pp.112-117
    • /
    • 1995
  • Succinic semialdehyde reductase was inactivated by o-phthalaldehyde. The inactivation followed pseudo-first order kinetics, and the second-order rate constant for the inactivation process was 28 $M^{-1}s^{-1}$ at pH 7.4 and $25^{\circ}C$. The absorption spectrum ($\lambda_{max}$ 337 nm) and fluorescence excitation ($\lambda_{max}$ 340 nm) and fluorescence emission spectra ($\lambda_{max}$ 409 nm) were consistent with the formation of an isoindole derivative in the catalytic site between a cysteine and a lysine residue approximately about 3 $\AA$ apart. The substrate, succinic semialdehyde, did not protect enzymatic activity against inactivation, whereas the coenzyme NADPH protected against o-phthaladehyde induced inactivation of the enzyme. About 1 isoindole group per mol of the enzyme was formed following complete loss of enzymatic activity. These results suggest that the amino acid residues of the enzyme participating in a reaction with o-phthalaldehyde are cysteinyl and lysyl residues at or near the NADPH binding site.

  • PDF