• Title/Summary/Keyword: GABA shunt

Search Result 13, Processing Time 0.019 seconds

Inactivation of Brain Succinic Semialdehyde Reductase by o-Phthalaldehyde

  • Song, M.S.;Lee, B.R.;Jang, S.H.;Cho, S.W.;Park, S.Y.
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.75-75
    • /
    • 1995
  • Succinic semialdehyde reductase, one of key enzyme of GABA shunt in CNS, is inactivated by o-phthalaldehyde, The inactivation followed pseudo first-order kinetics, and the second-order rate constant for the inactivation process was 28 M$\^$-1/s$\^$-1/ at pH 7.4 and 25$^{\circ}C$. The absorption spectrum(λ$\_$max/=377nm), fluorescence exitation(λ$\_$max/=340nm) and fluorescence emission spectra (λ$\_$max/=409nm) were consistent with the formation of an isoindole derivative in the catalytic site between a cysteine and a lysine residues about 3${\AA}$ apart. The substrate, succinic semialdehyde, did not protect the enzymatic activity against inactivation, whereas the coenzyme, NADPH, protected against o-phthalaldehyde induced inactivation of the enzyme. About 1 isoindole group per moi of the enzyme was formed following complete loss of the enzymatic activity. These results suggest that the amino acid residues of the enzyme participating in reaction with o-phthalaldehyde more likely residues at or near the coenzyme binding site.

  • PDF

Chemical Modification of Tryptophan Residue in Bovine Brain succinic Semlaldehyde Reductase

  • Hong, Joung-Woo;Jeon, Seong-Gyu;Bahn, Jae-Hoon;Park, Jin-Seu;Kwon, Hyeok-Yil;Cho, Sung-Woo;Choi, Soo-Young
    • Animal cells and systems
    • /
    • v.1 no.4
    • /
    • pp.583-587
    • /
    • 1997
  • Incubation of an NADPH-dependent succinic semialdehyde reductase from bovine brain with N-bromosuccinimide (NBS) resulted in a time-dependent loss of enzyme activity. The inactivation followed pseudo-first-order kinetics with the second-order rate constant of $6.8\times{10}^3$ $M^-1$ $min^{-1}$. The inactivation was prevented by preincubation of the enzyme with substrate succinic semialdehyde, but not with coenzyme NADPH. There was a linear relation-ship between oxindole formation and the loss of enzyme activity. Spectro-photometric studies indicated that about one oxindole group per molecule of the enzyme was formed following complete loss of enzymatic activity. It is suggested that the catalytic function of succinic semialdehyde reductase is modulated by binding of NBS to a specific tryptophan residue at or near the substrate binding site of the enzyme.

  • PDF

Inactivation of Brain Succinic Semialdehyde Reductase by o-Phthalaldehyde

  • Choi, Soo-Young;Song, Min-Sun;Lee, Byung-Ryong;Jang, Sang-Ho;Lee, Su-Jin;Park, Jin-Seu;Choe, Joon-Ho;Cho, Sung-Woo
    • BMB Reports
    • /
    • v.28 no.2
    • /
    • pp.112-117
    • /
    • 1995
  • Succinic semialdehyde reductase was inactivated by o-phthalaldehyde. The inactivation followed pseudo-first order kinetics, and the second-order rate constant for the inactivation process was 28 $M^{-1}s^{-1}$ at pH 7.4 and $25^{\circ}C$. The absorption spectrum ($\lambda_{max}$ 337 nm) and fluorescence excitation ($\lambda_{max}$ 340 nm) and fluorescence emission spectra ($\lambda_{max}$ 409 nm) were consistent with the formation of an isoindole derivative in the catalytic site between a cysteine and a lysine residue approximately about 3 $\AA$ apart. The substrate, succinic semialdehyde, did not protect enzymatic activity against inactivation, whereas the coenzyme NADPH protected against o-phthaladehyde induced inactivation of the enzyme. About 1 isoindole group per mol of the enzyme was formed following complete loss of enzymatic activity. These results suggest that the amino acid residues of the enzyme participating in a reaction with o-phthalaldehyde are cysteinyl and lysyl residues at or near the NADPH binding site.

  • PDF