• Title/Summary/Keyword: GABA receptor

Search Result 143, Processing Time 0.019 seconds

cDNA microarray gene expression profiling of melittin and mast cell degranulation peptide in human mast cell strain (봉독의 주요성분인 Melittin과 MCDP이 비만세포주에서 유전자 발현에 미치는 영향에 대한 microarray 분석)

  • So, Jae-jin;Woo, Hyun-su;Kim, Chang-hwan
    • Journal of Acupuncture Research
    • /
    • v.22 no.3
    • /
    • pp.37-51
    • /
    • 2005
  • Mast cell is a cell that functions mainly in our body with a respect to inflammation and allergic response. Bee venom has been progressed in a study as a model related to mechanism in alleviation of pain until now, but it is being progressed in a study relevant to immunocyte in anti-inflammation or anti-allergic response. The present study is aimed to present the basis related to a future study of gene, by researching the influence of melittin and MCD Peptide, which are major ingredients in Bee venom, upon the expression of gene in the mast cell strain. In this study, it dealt with melittin and MCD Peptide respectively, in the effective concentration after passing though the experiment of cytotoxicity by using human mast cell strain. Also, with the respect in the aspect of expression in gene that changes at this time, information was obtained through the technique of analyzing microarray. Through experimental statistics, when regarding a case that global M is significant in more than 1 or -1, in melittin, all 7 genes were accelerated, and 8 inhibited. In MCDP, 7 genes were accelerated and 17 genes inhibited. The function in the body to which these genes are related, was associated with the protein binding within a cell, the activation in the function of lymphocyte, the acceptor related to macrophage antigen. In cell nucleus, substance related to GABA A receptor, protein associated with cAMP reactive element, substance related to complement system No.8 and to B-cell, protein substance related to polycystic kidney disease, substance related to inflammation, and the protein substance of influencing coagulation of blood. Through these results of analysis, it could obtain more useful materials in clarifying the mechanism of action in melittin and MCD peptide, which are in charge of mainly medical action in the abdomen. Also, it is thought that an in-depth study on the influence of main ingredients in Bee venom, the wholly honey bee venom aqua upon anti-allergic response or anti-inflammation are further required.

  • PDF

GABA-enriched fermented Laminaria japonica improves cognitive impairment and neuroplasticity in scopolamine- and ethanol-induced dementia model mice

  • Reid, Storm N.S.;Ryu, Je-kwang;Kim, Yunsook;Jeon, Byeong Hwan
    • Nutrition Research and Practice
    • /
    • v.12 no.3
    • /
    • pp.199-207
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Fermented Laminaria japonica (FL), a type sea tangle used as a functional food ingredient, has been reported to possess cognitive improving properties that may aid in the treatment of common neurodegenerative disorders, such as dementia. MATERIALS/METHODS: We examined the effects of FL on scopolamine (Sco)- and ethanol (EtOH)-induced hippocampus-dependent memory impairment, using the Passive avoidance (PA) and Morris water maze (MWM) tests. To examine the underlying mechanisms associated with neuroprotective effects, we analyzed acetylcholine (ACh) and acetylcholinesterase (AChE) activity, brain tissue expression of muscarinic acetylcholine receptor (mAChR), cAMP response element binding protein (CREB) and extracellular signal-regulated kinases 1/2 (ERK1/2), and immunohistochemical analysis, in the hippocampus of mice, compared to current drug therapy intervention. Biochemical blood analysis was carried out to determine the effects of FL on alanine transaminase (ALT), aspartate transaminase (AST), and triglyceride (TG) and total cholesterol (TC) levels. 7 groups (n = 10) consisted of a control (CON), 3 Sco-induced dementia and 3 EtOH-induced dementia groups, with both dementia group types containing an untreated group (Sco and EtOH); a positive control, orally administered donepezil (Dpz) (4mg/kg) (Sco + Dpz and EtOH + Dpz); and an FL (50 mg/kg) treatment group (Sco + FL50 and EtOH + FL50), orally administered over the 4-week experimental period. RESULTS: FL50 significantly reduced EtOH-induced increase in AST and ALT levels. FL50 treatment reduced EtOH-impaired step-through latency time in the PA test, and Sco- and EtOH-induced dementia escape latency times in the MWM test. Moreover, anticholinergic effects of Sco and EtOH on the brain were reversed by FL50, through the attenuation of AChE activity and elevation of ACh concentration. FL50 elevated ERK1/2 protein expression and increased p-CREB (ser133) in hippocampus brain tissue, according to Western blot and immunohistochemistry analysis, respectively. CONCLUSION: Overall, these results suggest that FL may be considered an efficacious intervention for Sco- and EtOH-induced dementia, in terms of reversing cognitive impairment and neuroplastic dysfunction.

Alterations of Calcium-binding Protein Immunoreactivities in the Hippocampus Following Traumatic Brain Injury (외상성 뇌손상 후 해마내 칼슘결합단백질 면역반응의 변화)

  • Oh, Yun-Jung;Kim, Baek-Seon;Park, Dae-Kyoon;Park, Kyung-Ho;Ko, Jeong-Sik;Kim, Duk-Soo
    • Applied Microscopy
    • /
    • v.41 no.4
    • /
    • pp.235-248
    • /
    • 2011
  • Traumatic brain injury (TBI) is one of the leading causes of death and disability in children and adults and is a major risk factor for the development of posttraumatic epilepsy (PTE). Recent studies have provided significant insight into the pathophysiological mechanisms underlying the development of epilepsy. Although the link between brain trauma and epilepsy is well recognized, the complex biological mechanisms that result in PTE following TBI have not been fully elucidated. Therefore, this study investigated in order to identify whether or not the abnormal expression of calcium-binding proteins in the lesioned hippocampus plays a role in neuronal damage by brain trauma and whether or not the expressions may change in the contralateral hippocampus during the adaptive stage as early time point following TBI. During early time point following TBI, both parvalbumin (PV) and calbindin D-28k (CB) immunoreactivities were decreased with in the lesioned hippocampus. However, these expressions were recovered to control levels as depend on time courses. On the other hand, PV immunoreactivity in contralateral hippocampus was transiently reduced as compared to the control levels, whereas CB expression was unchanged. These findings indicate that the alterations of the calcium-binding proteins, especially PV and CB, may contribute to the neuronal death and/or damage induced by abnormal inhibitory neurotransmission at early time period following brain trauma and the development of epileptogenesis in patients with traumatic brain injury.