• Title/Summary/Keyword: GA-based optimization

Search Result 425, Processing Time 0.028 seconds

Soccer league optimization-based championship algorithm (SLOCA): A fast novel meta-heuristic technique for optimization problems

  • Ghasemi, Mohammad R.;Ghasri, Mehdi;Salarnia, Abdolhamid
    • Advances in Computational Design
    • /
    • v.7 no.4
    • /
    • pp.297-319
    • /
    • 2022
  • Due to their natural and social revelation, also their ease and flexibility, human collective behavior and teamwork sports are inspired to introduce optimization algorithms to solve various engineering and scientific problems. Nowadays, meta-heuristic algorithms are becoming some striking methods for solving complex real-world problems. In that respect in the present study, the authors propose a novel meta-innovative algorithm based on soccer teamwork sport, suitable for optimization problems. The method may be referred to as the Soccer League Optimization-based Championship Algorithm, inspired by the Soccer league. This method consists of two main steps, including: 1. Qualifying competitions and 2. Main competitions. To evaluate the robustness of the proposed method, six different benchmark mathematical functions, and two engineering design problem was performed for optimization to assess its efficiency in achieving optimal solutions to various problems. The results show that the proposed algorithm may well explore better performance than some well-known algorithms in various aspects such as consistency through runs and a fast and steep convergence in all problems towards the global optimal fitness value.

Large Step Optimization Approach to Flexible Job Shop Scheduling with Multi-level Product Structures (다단계 제품 구조를 고려한 유연 잡샵 일정계획의 Large Step Optimization 적용 연구)

  • Jang, Yang-Ja;Kim, Kidong;Park, Jinwoo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.05a
    • /
    • pp.429-434
    • /
    • 2002
  • For companies assembling end products from sub assemblies or components, MRP (Material Requirement Planning) logic is frequently used to synchronize and pace the production activities for the required parts. However, in MRP, the planning of operational-level activities is left to short term scheduling. So, we need a good scheduling algorithm to generate feasible schedules taking into account shop floor characteristics and multi-level job structures used in MRP. In this paper, we present a GA (Genetic Algorithm) solution for this complex scheduling problem based on a new gene to reflect the machine assignment, operation sequences and the levels of the operations relative to final operation. The relative operation level is the control parameter that paces the completion timing of the components belonging to the same branch in the multi-level job hierarchy. In order to revise the fixed relative level which solutions are confined to, we apply large step transition in the first step and GA in the second step. We compare the genetic algorithm and 2-phase optimization with several dispatching rules in terms of tardiness for about forty modified standard job-shop problem instances.

  • PDF

Seismic behavior enhancement of frame structure considering parameter sensitivity of self-centering braces

  • Xu, Longhe;Xie, Xingsi;Yan, Xintong;Li, Zhongxian
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.45-56
    • /
    • 2019
  • A modified mechanical model of pre-pressed spring self-centering energy dissipation (PS-SCED) brace is proposed, and the hysteresis band is distinguished by the indication of relevant state variables. The MDOF frame system equipped with the braces is formulated in an incremental form of linear acceleration method. A multi-objective genetic algorithm (GA) based brace parameter optimization method is developed to obtain an optimal solution from the primary design scheme. Parameter sensitivities derived by the direct differentiation method are used to modify the change rate of parameters in the GA operator. A case study is conducted on a steel braced frame to illustrate the effect of brace parameters on node displacements, and validate the feasibility of the modified mechanical model. The optimization results and computational process information are compared among three cases of different strategies of parameter change as well. The accuracy is also verified by the calculation results of finite element model. This work can help the applications of PS-SCED brace optimization related to parameter sensitivity, and fulfill the systematic design procedure of PS-SCED brace-structure system with completed and prospective consequences.

A New Design Approach for Optimization of GA-based SOPNN (GA 기반 자기구성 다항식 뉴럴 네트워크의 최적화를 위한 새로운 설계 방법)

  • Park, Ho-Sung;Park, Byoung-Jun;Park, Keon-Jun;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2627-2629
    • /
    • 2003
  • In this paper, we propose a new architecture of Genetic Algorithms(GAs)-based Self-Organizing Polynomial Neural Networks(SOPNN). The conventional SOPNN is based on the extended Group Method of Data Handling(GMDH) method and utilized the polynomial order (viz. linear, quadratic, and modified quadratic) as well as the number of node inputs fixed (selected in advance by designer) at Polynomial Neurons (or nodes) located in each layer through a growth process of the network. Moreover it does not guarantee that the SOPNN generated through learning has the optimal network architecture. But the proposed GA-based SOPNN enable the architecture to be a structurally more optimized networks, and to be much more flexible and preferable neural network than the conventional SOPNN. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between approximation and generalization (predictive) abilities of the model. To evaluate the performance of the GA-based SOPNN, the model is experimented with using nonlinear system data.

  • PDF

Optimal Particle Swarm Based Placement and Sizing of Static Synchronous Series Compensator to Maximize Social Welfare

  • Hajforoosh, Somayeh;Nabavi, Seyed M.H.;Masoum, Mohammad A.S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.501-512
    • /
    • 2012
  • Social welfare maximization in a double-sided auction market is performed by implementing an aggregation-based particle swarm optimization (CAPSO) algorithm for optimal placement and sizing of one Static Synchronous Series Compensator (SSSC) device. Dallied simulation results (without/with line flow constraints and without/with SSSC) are generated to demonstrate the impact of SSSC on the congestion levels of the modified IEEE 14-bus test system. The proposed CAPSO algorithm employs conventional quadratic smooth and augmented quadratic nonsmooth generator cost curves with sine components to improve the accurate of the model by incorporating the valve loading effects. CAPSO also employs quadratic smooth consumer benefit functions. The proposed approach relies on particle swarm optimization to capture the near-optimal GenCos and DisCos, as well as the location and rating of SSSC while the Newton based load flow solution minimizes the mismatch equations. Simulation results of the proposed CAPSO algorithm are compared to solutions obtained by sequential quadratic programming (SQP) and a recently implemented Fuzzy based genetic algorithm (Fuzzy-GA). The main contributions are inclusion of customer benefit in the congestion management objective function, consideration of nonsmooth generator characteristics and the utilization of a coordinated aggregation-based PSO for locating/sizing of SSSC.

Loading pattern optimization using simulated annealing and binary machine learning pre-screening

  • Ga-Hee Sim;Moon-Ghu Park;Gyu-ri Bae;Jung-Uk Sohn
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1672-1678
    • /
    • 2024
  • We introduce a creative approach combining machine learning with optimization techniques to enhance the optimization of the loading pattern (LP). Finding the optimal LP is a critical decision that impacts both the reload safety and the economic feasibility of the nuclear fuel cycle. While simulated annealing (SA) is a widely accepted technique to solve the LP optimization problem, it suffers from the drawback of high computational cost since LP optimization requires three-dimensional depletion calculations. In this note, we introduce a technique to tackle this issue by leveraging neural networks to filter out inappropriate patterns, thereby reducing the number of SA evaluations. We demonstrate the efficacy of our novel approach by constructing a machine learning-based optimization model for the LP data of the Korea Standard Nuclear Power Plant (OPR-1000).

Outage Analysis and Optimization for Time Switching-based Two-Way Relaying with Energy Harvesting Relay Node

  • Du, Guanyao;Xiong, Ke;Zhang, Yu;Qiu, Zhengding
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.545-563
    • /
    • 2015
  • Energy harvesting (EH) and network coding (NC) have emerged as two promising technologies for future wireless networks. In this paper, we combine them together in a single system and then present a time switching-based network coding relaying (TSNCR) protocol for the two-way relay system, where an energy constrained relay harvests energy from the transmitted radio frequency (RF) signals from two sources, and then helps the two-way relay information exchange between the two sources with the consumption of the harvested energy. To evaluate the system performance, we derive an explicit expression of the outage probability for the proposed TSNCR protocol. In order to explore the system performance limit, we formulate an optimization problem to minimize the system outage probability. Since the problem is non-convex and cannot be directly solved, we design a genetic algorithm (GA)-based optimization algorithm for it. Numerical results validate our theoretical analysis and show that in such an EH two-way relay system, if NC is applied, the system outage probability can be greatly decreased. Moreover, it is shown that the relay position greatly affects the system performance of TSNCR, where relatively worse outage performance is achieved when the relay is placed in the middle of the two sources. This is the first time to observe such a phenomena in EH two-way relay systems.

Nanoaperture Design in Visible Frequency Range Using Genetic Algorithm and ON/OFF Method Based Topology Optimization Scheme (유전알고리즘 및 ON/OFF 방법을 이용한 가시광선 영역의 나노개구 형상의 위상최적설계)

  • Shin, Hyun Do;Yoo, Jeonghoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1513-1519
    • /
    • 2013
  • A genetic algorithm (GA) is an optimization technique based on natural evolution theory to find the global optimal solution. Unlike the gradient-based method, it can design nanoscale structures in the electric field because it does not require sensitivity calculation. This research intends to design a nanoaperture with an unprecedented shape by the topology optimization scheme based on the GA and ON/OFF method in the visible frequency range. This research mainly aims to maximize the transmission rate at a measuring area located 10nm under the exit plane and to minimize the electric distribution at other locations. The finite element analysis (FEA) and optimization process are performed by using the commercial package COMSOL combined with the Matlab programming. The final results of the optimized model are analyzed by a comparison of the electric field intensity and the spot size of near field with those of the initial model.

Simple DC CAD model and parameter extraction method for HBT (HBT를 위한 간단한 DC CAD 모델과 파라메터 추출 방법)

  • 서영석;박용완
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.7
    • /
    • pp.48-55
    • /
    • 1998
  • We propose a new static current source model and parameter extraction method for AlGaAs/GaAs HBT. The proposed model has 9 parameters describing internal currents and are experessed with the physically meaningful parameters.The proposed parameter extraction method uses the measured dC IV curves and does not need the gummel plt data and any optimization process. the constructed model based on the proposed method predicts the measured data well.

  • PDF

Optimization Using Gnetic Algorithms and Simulated Annealing (유전자 기법과 시뮬레이티드 어닐링을 이용한 최적화)

  • Park, Jung-Sun;Ryu, Mi-Ran
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.939-944
    • /
    • 2001
  • Genetic algorithm is modelled on natural evolution and simulated annealing is based on the simulation of thermal annealing. Both genetic algorithm and simulated annealing are stochastic method. So they can find global optimum values. For compare efficiency of SA and GA's, some function value was maximized. In the result, that was a little better than GA's.

  • PDF