• Title/Summary/Keyword: GA-Fuzzy Controller

Search Result 109, Processing Time 0.033 seconds

Design of FLC for High-Angle-of-Attack Flight Using Adaptive Evolutionary Algorithm

  • Won, Tae-Hyun;Hwang, Gi-Hyun;Park, June-Ho;Lee, Man-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.187-196
    • /
    • 2003
  • In this paper, a new methodology of evolutionary computations - An Adaptive Evolutionary Algorithm (AEA) is proposed. AEA uses a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner in order to take merits of two different evolutionary computations : global search capability of GA and local search capability of ES. In the reproduction procedure, the proportions of the population by GA and ES are adaptively modulated according to the fitness. AEA is used to. designing fuzzy logic controller (FLC) for a high-angle-of-attack flight system for a super-maneuverable version of F-18 aircraft. AEA is used to determine the membership functions and scaling factors of an FLC. The computer simulation results show that the FLC has met both robustness and performance requirements.

Study on the Parameter Auto Tuned Genetic Algorithm for OCST Design Problems (최적 통신 스패닝 트리 설계 문제를 위한 파라미터 자동조절 유전알고리즘에 대한 연구)

  • Kim, Jong Ryul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.857-860
    • /
    • 2009
  • 최근 유무선 통신 시스템의 발전에 따른 인터넷 환경의 급격한 변화는 가상공간의 출현과 유비쿼터스 컴퓨팅 환경 구축에 대한 요구를 가속화시키고 있으며 이와 관련된 이론 및 기술의 발전을 주도해 왔다. 이와 관련한 문제들 중에 가장 근간이 되는 문제들 중 하나는 최적 통신 스패닝 트리(OCST: Optimal Communication Spanning Tree) 문제이다. 본 논문에서는 이러한 최적 통신 스패닝 트리 문제를 해결하기 위해 파라미터를 자동 조절하는 유전 알고리즘 (Parameter Auto Tuned GA, PAT-GA)을 이용한다. 제안하는 유전 알고리즘은 교차율, 돌연변이율과 같은 파라미터를 자동조절하기 위해 퍼지 논리 제어기 (FLC: Fuzzy Logic Controller)를 이용한다. 임의로 생성된 예제에 대한 수치 실험을 통해 통신시스템의 기본 문제 중 하나인 최적 통신 스패닝 트리 문제의 해법으로서의 제안 알고리즘의 유용성과 효율성을 확인한다.

  • PDF

LQG modeling and GA control of structures subjected to earthquakes

  • Chen, ZY;Jiang, Rong;Wang, Ruei-Yuan;Chen, Timothy
    • Earthquakes and Structures
    • /
    • v.22 no.4
    • /
    • pp.421-430
    • /
    • 2022
  • This paper addresses the stochastic control problem of robots within the framework of parameter uncertainty and uncertain noise covariance. First of all, an open circle deterministic trajectory optimization issue is explained without knowing the unequivocal type of the dynamical framework. Then, a Linear Quadratic Gaussian (LQG) controller is intended for the ostensible trajectory-dependent linearized framework, to such an extent that robust hereditary NN robotic controller made out of the Kalman filter and the fuzzy controller is blended to ensure the asymptotic stability of the non-continuous controlled frameworks. Applicability and performance of the proposed algorithm shown through simulation results in the complex systems which are demonstrate the feasible to improve the performance by the proposed approach.

A Study on the Trajectory Control of a Autonomous Mobile Robot (자율이동로봇을 위한 경로제어에 관한 연구)

  • Cho, Sung-Bae;Park, Kyung-Hun;Lee, Yang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2417-2419
    • /
    • 2001
  • A path planning is one of the main subjects in a mobile robot. It is divided into two parts. One is a global path planning and another is a local path planning. This paper, using the formal two methods, presents that the mobile robot moves to multi-targets with avoiding unknown obstacles. For the shortest time and the lowest cost, the mobile robot has to find a optimal path between targets. To find a optimal global path, we used GA(Genetic Algorithm) that has advantage of optimization. After finding the global path, the mobile robot has to move toward targets without a collision. FLC(Fuzzy Logic Controller) is used for local path planning. FLC decides where and how faster the mobile robot moves. The validity of the study that searches the shortest global path using GA in multi targets and moves to targets without a collision using FLC, is verified by simulations.

  • PDF

Speed Control for Low Speed Diesel Engine by Hybrid F-NFC (Hybrid F-NFC에 의한 저속 디젤 기관의 속도 제어)

  • Choi, G.H.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.159-164
    • /
    • 2006
  • In recent, the marine engine of a large size is being realized a lower speed, longer stroke and a small number of cylinders for the energy saving. Consequently the variation of rotational torque became larger than former days because of the longer delay-time in fuel oil injection process and an increased output per cylinder. It was necessary that algorithms have enough robustness to suppress the variation of the delay-time and the parameter perturbation. This paper shows the structure of hybrid F-NFC against the delay-time and the perturbation of engine parameter as modeling uncertainties, and the design of the robust speed controller by hybrid F-NFC for the engine. And, The Parameter values of linear equation are determined by RC-GA for F-NFS. The hybrid F-NFC is combined the F-NFC and PID controller for filling up each.

  • PDF

On Developing The Intellingent contro System of a Robot Manupulator by Fussion of Fuzzy Logic and Neural Network (퍼지논리와 신경망 융합에 의한 로보트매니퓰레이터의 지능형제어 시스템 개발)

  • 김용호;전홍태
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.52-64
    • /
    • 1995
  • Robot manipulator is a highly nonlinear-time varying system. Therefore, a lot of control theory has been applied to the system. Robot manipulator has two types of control; one is path planning, another is path tracking. In this paper, we select the path tracking, and for this purpose, propose the intelligent control¬ler which is combined with fuzzy logic and neural network. The fuzzy logic provides an inference morphorlogy that enables approximate human reasoning to apply to knowledge-based systems, and also provides a mathematical strength to capture the uncertainties associated with human cognitive processes like thinking and reasoning. Based on this fuzzy logic, the fuzzy logic controller(FLC) provides a means of converhng a linguistic control strategy based on expert knowledge into automahc control strategy. But the construction of rule-base for a nonlinear hme-varying system such as robot, becomes much more com¬plicated because of model uncertainty and parameter variations. To cope with these problems, a auto-tuning method of the fuzzy rule-base is required. In this paper, the GA-based Fuzzy-Neural control system combining Fuzzy-Neural control theory with the genetic algorithm(GA), that is known to be very effective in the optimization problem, will be proposed. The effectiveness of the proposed control system will be demonstrated by computer simulations using a two degree of freedom robot manipulator.

  • PDF

An Optimal Design of Neuro-Fuzzy Logic Controller Using Lamarckian Co-adaptation of Learning and Evolution (학습과 진화의 Lamarckian 상호 적응에 의한 뉴로-퍼지 제어기의 최적 설계)

  • 김대진;이한별;강대성
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.12
    • /
    • pp.85-98
    • /
    • 1998
  • This paper proposes a new design method of neuro-FLC by the Lamarckian co-adaptation scheme that incorporates the backpropagation learning into the GA evolution in an attempt to find optimal design parameters (fuzzy rule base and membership functions) of application-specific FLC. The design parameters are determined by evolution and learning in a way that the evolution performs the global search and makes inter-FLC parameter adjustments in order to obtain both the optimal rule base having high covering value and small number of useful fuzzy rules and the optimal membership functions having small approximation error and good control performance while the learning performs the local search and makes intra-FLC parameter adjustments by interacting each FLC with its environment. The proposed co-adaptive design method produces better approximation ability because it includes the backpropagation learning in every generation of GA evolution, shows better control performance because the used COG defuzzifier computes the crisp value accurately, and requires small workspace because the optimization procedure of fuzzy rule base and membership functions is performed concurrently by an integrated fitness function on the same fuzzy partition. Simulation results show that the Lamarckian co-adapted FLC produces the most superior one among the differently generated FLCs in all aspects such as the number of fuzzy rules, the approximation ability, and the control performance.

  • PDF

Control of Feed Rate Using Neurocontroller Incorporated with Genetic Algorithm in Fed-Batch Cultivation of Scutellaria baicalensis Georgi

  • Choi, Jeong-Woo;Lee, Woochang;Cho, Jin-Man;Kim, Young-Kee;Park, Soo-Yong;Lee, Won-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.687-691
    • /
    • 2002
  • To enhance the production of flavonoids [baicalin, wogonin-7-Ο-glucuronic acid (GA)], which are secondary metabolites of Scutellaria baicalensis Georgi(G.) plant cells, a multilayer perceptron control system was applied to regulate the substrate feeding in a fed-batch cultivation. The optimal profile for the substrate feeding rate in a fed-batch culture of S. baicalensis G. was determined by simulating a kinetic model using a genetic algorithm. Process variable profiles were then prepared for the construction of a multilayer perceptron controller that included massive parallelism, trainability, and fault tolerance. An error back-propagation algorithm was applied to train the multiplayer perceptron. The experimental results showed that neurocontrol incorporated with a genetic algorithm improved the flavonoid production compared with a simple fuzzy logic control system. Furthermore, the specific production yield and flavonoid productivity also increased.