• Title/Summary/Keyword: GA(genetic algorithm)

Search Result 1,520, Processing Time 0.024 seconds

Speed Control of Soccer Robot Using messy Genetic Algorithm (mGA를 이용한 축구 로봇의 속도 제어)

  • Kim, Jung-Chan;Joo, Young-Hoon;Park, Hyun-Bin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.590-595
    • /
    • 2003
  • In this paper, we propose a new method to the speed control of soccer robot using messy Genetic Algorithm(mGA). In order to arrive in the target of the soccer robot within the smallest time ,we propose the speed control function with several parameters which represent the reflection ratio distance and angle error. Also, we propose the algorithm for searching these parameters by using messy Genetic Algorithm. As a result of finding the optimal parameters, we can move the robot the most quickly in the target under the complex environment.

The Fuzzy Modeling by Virus-messy Genetic Algorithm (바이러스-메시 유전 알고리즘에 의한 퍼지 모델링)

  • 최종일;이연우;주영훈;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.157-160
    • /
    • 2000
  • This paper deals with the fuzzy modeling for the complex and uncertain system in which conventional and mathematical models may fail to give satisfactory results. mGA(messy Genetic Algorithm) has more effective and adaptive structure than sGA with respect to using changeable-length string and VEGA(Virus Evolution Genetic) Algorithm) can search the global and local optimal solution simultaneously with reverse transcription operator and transduction operator. Therefore in this paper, the optimal fuzzy model is obtained using Virus-messy Genetic Algorithm(Virus-mGA). In this method local information is exchanged in population so that population may sustain genetic divergence. To prove the surperioty of the proposed approach, we provide the numerical example.

  • PDF

On Combining Genetic Algorithm (GA) and Wavelet for High Dimensional Data Reduction

  • Liu, Zhengjun;Wang, Changyao;Zhang, Jixian;Yan, Qin
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1272-1274
    • /
    • 2003
  • In this paper, we present a new algorithm for high dimensional data reduction based on wavelet decomposition and Genetic Algorithm (GA). Comparative results show the superiority of our algorithm for dimensionality reduction and accuracy improvement.

  • PDF

Promoter Classification Using Genetic Algorithm Controlled Generalized Regression Neural Network (유전자 알고리즘과 일반화된 회귀 신경망을 이용한 프로모터 서열 분류)

  • 김성모;김근호;김병환
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.7
    • /
    • pp.531-535
    • /
    • 2004
  • A new method is presented to construct a classifier. This was accomplished by combining a generalized regression neural network (GRNN) and a genetic algorithm (GA). The classifier constructed in this way is referred to as a GA-GRNN. The GA played a role of controlling training factors simultaneously. The GA-GRNN was applied to classify 4 different Promoter sequences. The training and test data were composed of 115 and 58 sequence patterns, respectively. The classifier performance was investigated in terms of the classification sensitivity and prediction accuracy. Compared to conventional GRNN, GA-GRNN significantly improved the total classification sensitivity as well as the total prediction accuracy. As a result, the proposed GA-GRNN demonstrated improved classification sensitivity and prediction accuracy over the convention GRNN.

Optimum Design of Frame Structures Using Generalized Transfer Stiffness Coefficient Method and Genetic Algorithm (일반화 전달강성계수법과 유전알고리즘을 이용한 골조구조물의 최적설계)

  • Choi, Myung-Soo
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.202-208
    • /
    • 2005
  • The genetic algorithm (GA) which is one of the popular optimum algorithm has been used to solve a variety of optimum problems. Because it need not require the gradient of objective function and is easier to find global solution than gradient-based optimum algorithm using the gradient of objective function. However optimum method using the GA and the finite element method (FEM) takes many computational time to solve the optimum structural design problem which has a great number of design variables, constraints, and system with many degrees of freedom. In order to overcome the drawback of the optimum structural design using the GA and the FEM, the author developed a computer program which can optimize frame structures by using the GA and the generalized transfer stiffness coefficient method. In order to confirm the effectiveness of the developed program, it is applied to optimum design of plane frame structures. The computational results by the developed program were compared with those of iterative design.

  • PDF

Realization of Intelligence Controller Using Genetic Algorithm.Neural Network.Fuzzy Logic (유전알고리즘.신경회로망.퍼지논리가 결합된 지능제어기의 구현)

  • Lee Sang-Boo;Kim Hyung-Soo
    • Journal of Digital Contents Society
    • /
    • v.2 no.1
    • /
    • pp.51-61
    • /
    • 2001
  • The FLC(Fuzzy Logic Controller) is stronger to the disturbance and has the excellent characteristic to the overshoot of the initialized value than the classical controller, and also can carry out the proper control being out of all relation to the mathematical model and parameter value of the system. But it has the restriction which can't adopt the environment changes of the control system because of generating the fuzzy control rule through an expert's experience and the fixed value of the once determined control rule, and also can't converge correctly to the desired value because of haying the minute error of the controller output value. Now there are many suggested methods to eliminate the minute error, we also suggest the GA-FNNIC(Genetic Algorithm Fuzzy Neural Network Intelligence Controller) combined FLC with NN(Neural Network) and GA(Genetic Algorithm). In this paper, we compare the suggested GA-FNNIC with FLC and analyze the output characteristics, convergence speed, overshoot and rising time. Finally we show that the GA-FNNIC converge correctly to the desirable value without any error.

  • PDF

Genetic Algorithm with the Local Fine-Tuning Mechanism (유전자 알고리즘을 위한 지역적 미세 조정 메카니즘)

  • 임영희
    • Korean Journal of Cognitive Science
    • /
    • v.4 no.2
    • /
    • pp.181-200
    • /
    • 1994
  • In the learning phase of multilyer feedforword neural network,there are problems such that local minimum,learning praralysis and slow learning speed when backpropagation algorithm used.To overcome these problems, the genetic algorithm has been used as learing method in the multilayer feedforword neural network instead of backpropagation algorithm.However,because the genetic algorith, does not have any mechanism for fine-tuned local search used in backpropagation method,it takes more time that the genetic algorithm converges to a global optimal solution.In this paper,we suggest a new GA-BP method which provides a fine-tunes local search to the genetic algorithm.GA-BP method uses gradient descent method as one of genetic algorithm's operators such as mutation or crossover.To show the effciency of the developed method,we applied it to the 3-parity bit problem with analysis.

Real-coded Micro-Genetic Algorithm for Nonlinear Constrained Engineering Designs

  • Kim Yunyoung;Kim Byeong-Il;Shin Sung-Chul
    • Journal of Ship and Ocean Technology
    • /
    • v.9 no.4
    • /
    • pp.35-46
    • /
    • 2005
  • The performance of optimisation methods, based on penalty functions, is highly problem- dependent and many methods require additional tuning of some variables. This additional tuning is the influences of penalty coefficient, which depend strongly on the degree of constraint violation. Moreover, Binary-coded Genetic Algorithm (BGA) meets certain difficulties when dealing with continuous and/or discrete search spaces with large dimensions. With the above reasons, Real-coded Micro-Genetic Algorithm (R$\mu$GA) is proposed to find the global optimum of continuous and/or discrete nonlinear constrained engineering problems without handling any of penalty functions. R$\mu$GA can help in avoiding the premature convergence and search for global solution-spaces, because of its wide spread applicability, global perspective and inherent parallelism. The proposed R$\mu$GA approach has been demonstrated by solving three different engineering design problems. From the simulation results, it has been concluded that R$\mu$GA is an effective global optimisation tool for solving continuous and/or discrete nonlinear constrained real­world optimisation problems.

A Real Code Genetic Algorithm for Optimum Design (실수형 Genetic Algorithm에 의한 최적 설계)

  • 양영순;김기화
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.187-194
    • /
    • 1995
  • Traditional genetic algorithms(GA) have mostly used binary code for representing design variable. The binary code GA has many difficulties to solve optimization problems with continuous design variables because of its targe computer core memory size, inefficiency of its computing time, and its bad performance on local search. In this paper, a real code GA is proposed for dealing with the above problems. So, new crossover and mutation processes of read code GA are developed to use continuous design variables directly. The results of real code GA are compared with those of binary code GA for several single and multiple objective optimization problems. As results of comparisons, it is found that the performance of the real code GA is better than that of the binary code GA, and concluded that the rent code GA developed here can be used for the general optimization problem.

  • PDF