• Title/Summary/Keyword: GA(galvannealed) steel

Search Result 29, Processing Time 0.025 seconds

A study on frictional characteristics in galvannealed sheet steel using one flat friction test (편마찰 실험을 이용한 합금화 온도별 GA 강판의 마찰특성에 관한 연구)

  • Jeon Sung-Jin;Lee Jung-Min;Kim Sang-Ju;Kim Byung-Min
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1575-1578
    • /
    • 2005
  • As GA(Galvannealed sheet steel, GA) has good corrosion resistance, weldability and paintability as well as excellent stamping formability it's demand is rapidly increasing for automotive panel. But the layer of the Galvannealed sheet steel is easy to have a coating layer such as powdering and flaking in the press process because it is composed of Fe-Zn alloy. Therefore, the process condition is properly required to form the surface treated sheet steel. The frictional characteristics with dies are changed according to the annealing temperature, $505^{\circ}C,\;515^{\circ}C\;and\;540^{\circ}C$ during the process. To obtain the frictional characteristics of GA sheet steel in this study, on flat friction test is conducted. The friction coefficient is compared with the variation of pressure and velocity, viscosity of lubricant at the various galvannealed temperatures.

  • PDF

Determination of Mechanical Properties for Coating Layer of Galvannealed Sheet Steel using Nano-indentation and FEM (나노인덴테이션 시험과 유한요소해석을 이용한 합금화 온도별 GA강판의 코팅층 체적 거동 결정)

  • Jeon S. J.;Lee J. M.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.389-392
    • /
    • 2005
  • In the modern days, a galvannealed sheet steel(GA) instead of a cold rolled steel sheet has been widely used as an alternative to extend the life of automotive body. Accordingly, the mechanical properties of GA for automobiles were taken Into account and studied by comparing with the temperature variation on annealing in this study. To clarify the effect of surface features in the mechanical properties of GA, the several tests such as nanoindentation and FE-analysis were executed. For this goal use is made of the method of neural networks. The developed neural networks apply also to obtain reliable mechanical properties of the thin films. Load-displacement curve was computed by the analysis procedure and compared with experimental results.

  • PDF

Development of 980MPa Grade Galvannealed Advance High Strength Steel Sheets for Automobile

  • Kim, Byoung-Jin;Kim, Young-Hee;Park, Jun-Young;Lee, Young-Soo;Moon, Man-Been
    • Corrosion Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.47-51
    • /
    • 2011
  • Main issues in the automotive industry are the reduction of vehicle body weight for energy savings and improvement of crashworthiness for passenger safety. In order to address both these issues, there has recently been increasing application of galvannealed advance high strength steel (GA AHSS) sheets for automobiles. However, GA AHSS sheets have some surface defects such as coating bare spots due to the addition of solid-solution strengthening elements, which result in the deterioration of the galvannealing reaction. In this study, the effects of galvannealed manufacturing conditions on surface and mechanical properties, resistance spot weldability on a laboratory scale, and GA 980 MPa steel sheets produced by commercial continuous galvannealing line (CGL) were investigated.

Resistance Spot Weldability of Surface Roughness Textured Galvannealed Steel Sheets (표면조도처리 된 합금화 용융아연도금강판의 저항 점 용접성)

  • Park, Sang-Soon;Kim, Ki-Hong;Kang, Nam-Hyun;Kim, Young-Seok;Rhym, Young-Mok;Choi, Yung-Min;Park, Yeong-Do
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.8
    • /
    • pp.495-505
    • /
    • 2008
  • With the high proportion of zinc coated steels in body-in-white assembly, newly developed surface roughness textured galvannealed steel sheets have been introduced. In this study, zinc coated and surface roughness textured steel sheets were welded by resistance spot welding to investigate its weldability including electrode wear test. Based on the results of tensile-shear test, nugget diameter changes, and electrode tip growth test, it was clear that both surface roughness textured steels (GA-T and GA-E) showed good weldability. Also, there was no large difference in weldability and electrode wear behavior between GA-T and GA-E steels which have different surface roughness morphology. An analysis of electrode degradation showed Fe and Zn penetration through the electrode tip surface at 2400 welds reached $55{\sim}60{\mu}m$ and $75{\sim}80{\mu}m$, respectively. Therefore, there is no significant effect of surface roughness morphology on spot weldability of surface roughness textured galvannealed steel sheets. However, slight difference in thickness of alloying layers existing on electrode tip was found between GA-T and GA-E steels.

Effect of Organic Lubricant Film on Various Properties of Galvannealed Steel Sheets (합금화용융아연도금강판의 품질특성에 미치는 유기윤활피막의 영향)

  • 김영근
    • Journal of Surface Science and Engineering
    • /
    • v.36 no.2
    • /
    • pp.176-184
    • /
    • 2003
  • New lubricant film of organic and inorganic composite resin was developed to improve the press formability of galvannealed steel sheets (GA) for automotive body panels. The frictional coefficient of lubricant GA steel sheets is about 20% superior to that of uncoated GA. The current range of spot welding of lubricant GA is similar to that of the uncoated GA, but the burning trace of spot welding is inferior to that of the uncoated GA in the oiling condition. The alkaline degreasability of lubricant GA shows 100% in alkaline degreasing condition of automotive company. The size and shape of the phosphated coating layer are similar to those of the uncoated GA sheet. The powdering property of the lubricant GA gives rise to 20∼50% improved property compared with the uncoated GA sheet.

The Influence of Annealing Temperature on Mechanical Properties and Friction Coefficient of Coating Layer in Galvannealed Sheet Steel (용융아연도금강판에서 어닐링 온도변화에 따른 화합물화가 도금층 기계적 특성 및 마찰계수에 미치는 영향)

  • Jeon J.S.;Lee J. M.;;Kim D. J.;Kang Y.S.;Kim B. M.
    • Transactions of Materials Processing
    • /
    • v.14 no.8 s.80
    • /
    • pp.696-703
    • /
    • 2005
  • In the modern days, a galvannealed sheet steel (GA) instead of a cold rolled steel sheet has been widely used as an alternative to extend the life of automotive body. Accordingly, the mechanical properties of GA for automobiles were taken into account and studied by examining their variation with annealing temperature. To clarify the effect of surface features on the mechanical and frictional properties of GA, the several tests such as nanoindentation, Vickers hardness and nano scratch test were executed. The frictional characteristics of coating layers of GA were examined through nano scratch test in this study. The friction coefficient of coating layers on the surface was obtained from the nano scratch. The variation of friction coefficient versus velocity and pressure was taken into consideration in this paper. Hardness and elastic modulus of coating layer were increased as increasing annealing temperature.

The influence of annealing temperature on mechanical properties and friction coefficient of coating layer in galvannealed sheet steel (합금화 용융아연도금강판에서 어닐링 온도가 도금층 기계적 특성 및 마찰계수에 미치는 영향)

  • Jeon J. S.;Lee J. M.;Kim D. H.;Kim D. J.;Kang Y. S.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.113-117
    • /
    • 2005
  • In the modern days, a galvannealed sheet steel (GA) instead of a cold rolled steel sheet has been widely used as an alternative to extend the life of automotive body. Accordingly, the mechanical properties of GA for automobiles were taken into account and studied by comparing with the temperature variation on annealing in this study. To clarify the effect of surface features in the mechanical and frictional properties of GA, the several tests such as nanoindentation, victors hardness and nano scratch test were executed. The developed neural networks apply also to obtain reliable mechanical properties of the thin films. Load-displacement curve was computed by the analysis procedure and compared with experimental results. The frictional characteristics of coating layers in GA were verified though nano scratch test in this study. The friction coefficient of coating layers on the surface was obtained from the nano scratch. The variation of friction coefficient versus velocity and pressure was taken into consideration in this paper.

  • PDF

Effect of Weldbond Process on the Weldability of 1.2GPa Grade Galvannealed TRIP Steel for Car Body Manufacturing (차체용 1.2GPa급 합금화아연도금 TRIP강의 용접성에 미치는 Weldbond 공정의 효과)

  • Lee, Jong-Dae;Lee, Hye-Rim;Kim, Mok-Soon;Seo, Jong-Deok;Kim, Jun-Ki
    • Journal of Welding and Joining
    • /
    • v.34 no.6
    • /
    • pp.28-34
    • /
    • 2016
  • Galvannealed(GA) steels are now generally used in car body manufacturing for corrosion resistance. In this study, the weldability and joint mechanical behavior of a newly developed 1.2GPa grade GA ultra high strength TRIP(transformation induced plasticity) steel was investigated for three joining processes, such as adhesive bonding, resistance spot welding and weldbonding. Under both shear and peel stress conditions, the failure mode of the adhesive joints were the mixture of the adhesive cohesive failure, adhesive interface failure and coating layer failure. It means that the adhesion strength of GA coating onto the base metal was similar to that of adhesive bonding onto the GA coating. Under the shear stress condition, the weldbonding exerted to expand the optimal spot welding condition of 1.2GPa GA TRIP steel because the strength of adhesive bond overwhelmed that of the resistance spot weld. Under the peel stress condition, the weldbonding also exerted to expand the optimal spot welding condition of 1.2GPa GA TRIP steel by inducing the tear fracture mode rather than the partial plug fracture mode.

Investigation of Streaky Mark Defect on Hot Dip Galvannealed IF Steel

  • Xinyan, Jin;Li, Wang;Xin, Liu
    • Corrosion Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.109-115
    • /
    • 2010
  • Interstitial-free (IF) steels are widely used for car body material. However, a few types of streaky mark defect are commonly found on hot dip galvannealed (GA) IF steel sheets. In the present study, both the phase structure of a streaky mark defect and the microstructure of the substrate just below it were characterized by optical microscopy (OM) and scanning electron microscopy (SEM). It was found that the bright streaky mark area was composed of ${\delta}$ phase while the dark normal area was full of craters. More than half of the grains at the uppermost surface of the substrate just below the streaky mark defect are unrecrystallized grains which could result from lower finish rolling temperature during hot rolling and be kept stable during the annealing process, while almost all the grains in the normal area are equiaxed grains. In order to confirm the effect of the unrecrystallized grains on the coating morphology, hot dip galvannealing simulation experiments were carried out in IWATANI HDPS. It is proved that the unrecrystallized grains accelerate the Fe-Zn reaction rate during galvannealing and result in a flatter coating surface and an even coating thickness. Finally, a formation mechanism of the streaky mark defect on the hot dip galvannealed IF steel sheet was discussed.

Surface Characteristics of the Galvannealed Coating in Interstitial-Free High Strengthen Steels Containing Si and Mn (Si, Mn함유 IF 고강도 합금화 용융아연도금강판의 표면특성)

  • Jeon, Sun-Ho;Chin, Kwang-Geun;Kim, Dai-Ryong
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.2
    • /
    • pp.58-64
    • /
    • 2008
  • Surface-void defects observed on the galvannealed(GA) steel sheets in Interstitial-free high-strengthened steels containing Si and Mn have been investigated using the combination of the FIB(Focused Ion Beam) and FE-TEM(Field Emission-Transmission Electron Microscope) techniques. The scanning ion micrographs of cross-section microstructure of defects showed that these defects were identified as craters which were formed on the projecting part of the substrate surface. Also, those craters were formed on the Si or Mn-Si oxides film through the whole interface between galvannealed coating and steel substrate. Interface enrichments and oxidations of the active alloying elements such as Si and Mn during reduction annealing process for galvanizing were found to interrupt Zn and Fe interdiffusion during galvannealing process. During galvannealing, Zn and Fe interdiffusion is preferentially started on the clean substrate surface which have no oxide layer on. And then, during galvannealing, crater is developed with consumption of molten zinc on the oxide layer.