• Title/Summary/Keyword: G3 calculation

Search Result 365, Processing Time 0.174 seconds

Comparison of Structural Types of L-Alanine Pentamer by Quantum Chemical Calculation

  • Kobayashi, Minoru;Sim, Jae Ho
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.425-430
    • /
    • 2022
  • L-alanine (LA, as an amino acid residue) pentamer model was used to investigate changes in the dihedral angle, intramolecular hydrogen bonding and formation energies during structural optimization. LA pentamers having four conformation types [𝛽: 𝜑/𝜓=t-/t+, 𝛼: 𝜑/𝜓=g-/g-, PPII: 𝜑/𝜓=g-/t+ and P-like: 𝜑/𝜓= g-/g+] were carried out by quantum chemical calculations (QCC) [B3LYP/6-31G(d,p)]. In LA, 𝛽, 𝛼, and P-like types did not change by optimization, having an intra-molecular hydrogen bond: NH⋯OC (H-bond), and PPII types in the absence of H-bond were transformed into P-like at the designated 𝜓 of 140°, and to 𝛽 at that of 160° or 175°. P-like and 𝛼 were about 0.5 kcal/mol/mu more stable than 𝛽. In order to understand the processes of the transformations, the changes of 𝜑/𝜓, distances of NH-OC (dNH/CO) and formation energies (𝜟E, kcal/mol/mu) were examined.

Comparison of Structural Types of Proline Pentamer by Quantum Chemical Calculation (QCC)

  • Jae-Ho Sim
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.2
    • /
    • pp.323-329
    • /
    • 2023
  • In this study, Proline pentamer model was used to investigate change in the dihedral angle, intramolecular hydrogen bonding and formation energies during structural optimization. L-Proline (LP, as an imino acid residue) pentamers having four conformation types [β: φ/ψ=t−/t+, α: φ/ψ=g−/g−, PPII: φ/ψ=g−/t+ and Plike: φ/ψ= g−/g+] were carried out by QCC [B3LYP/6-31G(d,p)]. The optimized structure and formation energy were examined for designated structure. In LP, P-like and PPII types did not change by optimization, and β types were transformed into PPII having no H-bond independently of the designated ψ values. PPII was more stable than P-like by about 2.2 kcal/mol/mu. The hydrogen bond distances of d2(4-6) type H-bonds were 1.94 - 2.00Å. In order to understand the processes of the transformations, the changes of φ/ψ, distances of NH-OC (dNH/CO) and formation energies (ΔE, kcal/mol/mu) were examined.

DFT Study for Cage-annulated p-tert-Butylcalix[4]crown-ether Complexed with Potassium Ion

  • Kim, Kwang-Ho;Park, Seong-Jun;Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.7
    • /
    • pp.1374-1378
    • /
    • 2008
  • Using DFT B3LYP/6-31+G(d,p)//B3LYP/6-31G(d,p) calculation method, stable molecular structures were optimized for the p-tert-butylcalix[4]arene functionalized at lower rim by cage-annulated crown ether (1) in two different conformers and their potassium-ion complexes. Cone conformer of free host 1 was slightly more stable than partial-cone conformer. For two different kinds of complexation mode, the potassium ion in benzene-rings (bz) pocket showed comparable complexation efficiency with the cation in cage-annulated crown-ether (cr) for the cone and partial-cone conformers of 1. The complex (1${\bullet}K^+$) in the cr-binding mode for the partial-cone conformer was more stable than the cone conformer for B3LYP/6-31G(d,p) geometry optimization. However, $1_{(cone)}{\bullet}K^+$(cr) showed lower single-point energy than the $1_{(pc)}{\bullet}K^+$(cr) for B3LYP/6- 31+G(d,p) calculation method.

Molecular Structure and Vibrational Spectra of 9-Fluorenone Density Functional Theory Study

  • 이상연;부봉현
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.8
    • /
    • pp.760-764
    • /
    • 1996
  • The molecular geometry and vibrational frequencies of 9-fluorenone have been calculated using the Hartree-Fock and Becke-3-Lee-Yang-Parr(B3LYP) density functional methods with 6-31G* basis set. Harmonic vibrational frequencies obtained from the B3LYP calculation show good agreement with the available experimental data. A few vibrational fundamentals are newly assigned based on the B3LYP results. The B3LYP calculation is reconfirmed to be useful in the assignment of the fundamental vibrational frequencies.

Study on the 2G High Temperature Superconducting Coil for Large Scale Superconducting Magnetic Energy Storage Systems (대용량 에너지 저장장치용 2세대 고온 초전도 코일의 특성해석)

  • Lee, Ji-Young;Lee, Seyeon;Kim, Yungil;Park, Sang Ho;Choi, Kyeongdal;Lee, Ji-Kwang;Kim, Woo-Seok
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.157-162
    • /
    • 2015
  • Large scale superconducting magnetic energy storage (SMES) system requires very high magnetic energy density in its superconducting coils to enhance the energy capacity and efficiency of the system. The recent high temperature superconducting (HTS) conductors, so called 2G conductors, show very good performance under very high magnetic field so that they seem to be perfect materials for the large scale SMES coils. A general shape of the coil system with the 2G HTS conductor has been a tor oid, because the magnetic field applied perpendicularly to the surface of the 2G HTS conductor could be minimized in this shape of coil. However, a toroid coil requires a 3-dimensional computation to acquire the characteristics of its critical current density - magnetic field relations which needs very complicated numerical calculation, very high computer specification, and long calculation time. In this paper, we suggested an analytic and statistical calculation method to acquire the maximum magnetic flux density applied perpendicularly to the surface of the 2G HTS conductor and the stored energy in the toroid coil system. Although the result with this method includes some errors but we could reduce these errors within 5 percent to get a reasonable estimation of the important parameters for design process of the HTS toroid coil system. As a result, the calculation time by the suggested method could be reduced to 0.1 percent of that by the 3-dimensional numerical calculation.

Quantum Chemical Calculations on the Conformational Structure of the Alanine Oligomer Model (알라닌 올리고머의 배좌구조에 관한 양자화학적 계산)

  • Sim, Jae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1563-1570
    • /
    • 2015
  • Conformational change during chain propagation of alanine oligomer was investigated by quantum chemical calculation(QCC) using 2~5mers(${\times}=2{\sim}5$) models. For estimation of the end group effects, two types of end group. "amide type" ($CH_3CONH-and-CONHCH_3$) and "methyl type" ($CH_3CONH-and-CONHCH_3$), were prepared as both ends(N-and-C). Conformers optimized for 5-mer converged to three types of ${\Phi}/{\Psi}$ : ${\alpha}$-helix(g+/g+, or g-/g-), PPII-like(extended helix-like, g+/g-, or g-/g+), and ${\beta}$-extended (t+/t-, or t-/t+), in the order of lower energy, and the energies of left- and right- handed conformers were the same (5-mer. amide type ${\Delta}E=-1.05$, right type ${\Delta}E=-1.62$). Energies of the monomer unit(${\Delta}E$) of ${\alpha}$-helix decreased with increases of monomer.

Sptimum Design of a Uniform Magnetic Field Exposure System for a Small-Sized Animal Study (자계 균일 공간 확보를 위한 소동물 실험용 5G급 자계 발생장치의 최적 설계)

  • 김상범;추장희;이동일;명성호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.7
    • /
    • pp.1194-1203
    • /
    • 2000
  • A magnetic field exposure system that generates 60 Hz magnetic fields from 1 mG to 5 G was designed and constructed for small-sized animal study. In order to investigate as many animals as possible at one series of test, uniform magnetic fields are required at wide living area of the animals. In this article, a cubic shaped field exposure system with three animal living floors was designed, which offers about 50 seating capacity. For calculation of magnetic fields inside the cage, a three-dimensional calculation program was developed. Using this, optimum electric current ratio of inner coil to outer coil and position of each coil were determined. Meanwhile, inductance of the exposure system was calculated for the design of power supply. The field measurement results of the manufactured exposure system showed that the difference between maximum and minimum magnetic field at the testing floors was less than 3%, which strongly demonstrated the field exposure system was good for small sized animal study.

  • PDF

Dissociation of the Pyridazine Molecular Ion

  • Yim, Min Kyoung;Jung, Sun Hwa;Choe, Joong Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.721-724
    • /
    • 2014
  • We have explored the potential energy surface for the dissociation of the pyridazine molecular ion using G3 model calculations. The pathways have been obtained for the formation of five possible $C_4H_4^{+{\bullet}}$ isomers by the loss of $N_2$ and the consecutive $H^{\bullet}$ loss. It is predicted that the methylenecyclopropene radical cation is the predominant product in the loss of $N_2$, which is formed via the allenylcarbene radical cation, and $CH_2=C-C{\equiv}CH^+$ is the predominant product in the consecutive $H^{\bullet}$ loss.

Decarbonylation of the 2-Hydroxypyridine Radical Cation: A Computational Study

  • Choe, Joong Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.3021-3024
    • /
    • 2014
  • The potential energy surface (PES) for the dissociation of the 2-hydroxypyridine (2-HP) radical cation was determined from G3//B3LYP calculations, including the loss of CO, HCN, and HNC. The formation of the 1H-pyrrole radical cation by decarbonylation through a more stable tautomer, the 2-pyridone (2-PY) radical cation, was the most favorable dissociation pathway. Kinetic analysis by the Rice-Ramsperger-Kassel-Marcus model calculations was carried out based on the obtained PES. It is proposed that the dissociation occurs after a rapid tautomerization to 2-$PY^{{\cdot}+}$, and that most of the ions generated by ionization of 2-HP have the structure of 2-$PY^{{\cdot}+}$ at equilibrium above the tautomerization barrier.