• Title/Summary/Keyword: G. oldhamiana

Search Result 2, Processing Time 0.018 seconds

Heavy Metal Contents of Gypsophila oldhamiana Growing on Soil Derived from Serpentine (사문암 지역에서 생육하는 대나물(Gypsophila oldhamiana)의 중금속 함량)

  • 김명희;민일식;송석환
    • The Korean Journal of Ecology
    • /
    • v.20 no.5
    • /
    • pp.385-391
    • /
    • 1997
  • To investigate the degrees of toxification in the serpentine areas, serpentinites and adjacent metamorphic rocks and soils from the serpentinite, metamorphic area and transitional area(mixed soil) between serpentinite and metamorphic rocks are collected from the Hongseong-Gun, Chungnam. A plant, Geochemically, the serpentinites are high in the nickel, chromium and cobalt content whereas the metamorphic rocks show high zinc, scandium, molybdenum and iron contents. The serpentine soils are high in the nickel, chromium and cobalt contents whereas the non-serpentine soils show high zinc and iron contents. Heavy metal contents in the G. oldhamiana are high in the serpentine soil relative to the mixed soil. Ratio of the iron to nickel contents for the G. oldhamiana are low in the serpentine soil(49) relative to the mixed soil(216). Of the G. oldhamiana, most of the heavy metal contents except zinc and molybdenum are high in the root relative to the aboveground vegetation. Comparing with rocks, the G. oldhamiana is low in the all of heavy metal contents relative to the serpentinite. Uptake of zinc by the G. oldhamiana is high in the serpentinites and metamorphic rocks whereas uptake of scandium and iron by the G. oldhamiana is very high in the serpentinite area.

  • PDF

Heavy metal concentration of plants in Baekdong serpentine area, western part of chungnam (충남 서부 백동 사문암지역 식물체의 중금속 함량)

  • 송석환;김명희;민일식;장인수
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.2
    • /
    • pp.113-125
    • /
    • 1999
  • Heavy metal elements were analysed to assess degrees of heavy metal contents for the plants, M. sinensis, A. vulgaris and G. oldhamiana, from the Baekdong serpentine area within the western part of Chungnam. The area was divided into two sites ; serpentine area (SP, consisting of serpentinite, SP) and non-serpentine area (NSP, containing amphibole schist, AS and gneiss, GN). Their host rocks(R) and top soils(S) were also collected from the each site. As the results of the study, the plants contain high concentration of Ni Cr, Co in the SP and Fe, Zn in the AS and GN. Plants from the AS of the NSP contain mainly high content in the most of elements. Averages of Ni, Co and Cr for the plants decreased in the order of SP, AS and GN. In the total element contents, M. sinensis and A. vulgaris decreased in the order of Fe > Ni or Cr > Zn > Co > As > Sc within the SP and in the order of Fe > Zn > Cr > Ni, within the GN. Comparing among the parts of plants, root parts were higher in the most of elements than the above grounds. In the relative element ratios of plants collected from the SP and GN (SP/GN) M. sinensis was lower than A. vulgaris in the most of elements, suggesting that the M. sinenis shows low absorption within the infertile serpentine soil and high absorption within the fertile gneiss soil. In the element contents of the top soils and their host rocks, the SP shows higher Ni, Co and Cr contents than the others. Their total contents decreased from SP to AS and GN, suggesting that the soils reflect the composition of their host rocks. Total element contents of the SP decreased in the order of Fe> Cr or Ni> Co> Zn> As> Sc and, for the GN, in the order of Fe> Zn> Cr> Ni> Co or Sc, respectively. In the relative element ratios, R/S of the SP decreased in the order of Cr> As> Fe> Sc> Co> Ni> Zn and for the GN, in the order of Sc> Fe> Ni> Zn> Cr> Co. Comparing with plants within the each site, their top soils were higher than the plants in the most of elements. and their increase and decrease trends for each element are similar. Differences of element contents between the top soils and plants decreased in the order of SP, AS and GN. Plants of the GN were moi-e similar to their soils than those of the others, suggesting that each plant species show different absorptions within the different soils. Comparing with the plants of GN, higher Ni, Co, Cr contents within those of the SP and their survival within the infertile serpentine soil suggest that the M. sinensis, A vulgaris and G. oldhamiana may be the tolerance species in the serpentine soil. Comparisons with the upper crust show that M. sinensis, and A. vulgaris within the SP show high Hi and Cr contents. suggestive of hyperaccumulation. Upper results with the previous studies for the contaminated soils developed as parent materials with the serpentinites suggest additional studies for ecological behaviors for the plant and degrees of accumulations for the elements need to know phytoextraction of the heavy metal elements within the soils.

  • PDF