• 제목/요약/키워드: G-protein-coupled receptor

검색결과 244건 처리시간 0.028초

G Protein-Coupled Receptor Signaling in Gastrointestinal Smooth Muscle

  • Sohn, Uy-Dong;Kim, Dong-Seok;Murthy, Karnam S.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권4호
    • /
    • pp.287-297
    • /
    • 2001
  • Contraction of smooth muscle is initiated by an increase in cytosolic $Ca^{2+}$ leading to activation of $Ca^{2+}$/ calmodulin-dependnet myosin light chain (MLC) kinase and phosphorylation of MLC. The types of contraction and signaling mechanisms mediating contraction differ depending on the region. The involvement of these different mechanisms varies depending on the source of $Ca^{2+}$ and the kinetic of $Ca^{2+}$ mobilization. $Ca^{2+}$ mobilizing agonists stimulate different phospholipases $(PLC-{\beta},\;PLD\;and\;PLA_2)$ to generate one or more $Ca^{2+}$ mobilizing messengers $(IP_3\;and\;AA),$ and diacylglycerol (DAG), an activator of protein kinase C (PKC). The relative contributions of $PLC-{\beta},\;PLA_2$ and PLD to generate second messengers vary greatly between cells and types of contraction. In smooth muscle cell derived form the circular muscle layer of the intestine, preferential hydrolysis of $PIP_2$ and generation of $IP_3$ and $IP_3-dependent\;Ca^{2+}$ release initiate the contraction. In smooth muscle cells derived from longitudinal muscle layer of the intestine, preferential hydrolysis of PC by PLA2, generation of AA and AA-mediated $Ca^{2+}$ influx, cADP ribose formation and $Ca^{2+}-induced\;Ca^{2+}$ release initiate the contraction. Sustained contraction, however, in both cell types is mediated by $Ca^{2+}-independent$ mechanism involving activation of $PKC-{\varepsilon}$ by DAG derived form PLD. A functional linkage between $G_{13},$ RhoA, ROCK, $PKC-{\varepsilon},$ CPI-17 and MLC phosphorylation in sustained contraction has been implicated. Contraction of normal esophageal circular muscle (ESO) in response to acetylcholine (ACh) is linked to $M_2$ muscarinic receptors activating at least three intracellular phospholipases, i.e. phosphatidylcholine-specific phospholipase C (PC-PLC), phospholipase D (PLD) and the high molecular weight (85 kDa) cytosolic phospholipase $A_2\;(cPLA_2)$ to induce phosphatidylcholine (PC) metabolism, production of diacylglycerol (DAG) and arachidonic acid (AA), resulting in activation of a protein kinase C (PKC)-dependent pathway. In contrast, lower esophageal sphincter (LES) contraction induced by maximally effective doses of ACh is mediated by muscarinic $M_3$ receptors, linked to pertussis toxin-insensitive GTP-binding proteins of the $G_{q/11}$ type. They activate phospholipase C, which hydrolyzes phosphatidylinositol bisphosphate $(PIP_2),$ producing inositol 1, 4, 5-trisphosphate $(IP_3)$ and DAG. $IP_3$ causes release of intracellular $Ca^{2+}$ and formation of a $Ca^{2+}$-calmodulin complex, resulting in activation of myosin light chain kinase and contraction through a calmodulin-dependent pathway.

  • PDF

The Short-Chain Fatty Acid Receptor GPR43 Modulates YAP/TAZ via RhoA

  • Park, Bi-Oh;Kim, Seong Heon;Kim, Jong Hwan;Kim, Seon-Young;Park, Byoung Chul;Han, Sang-Bae;Park, Sung Goo;Kim, Jeong-Hoon;Kim, Sunhong
    • Molecules and Cells
    • /
    • 제44권7호
    • /
    • pp.458-467
    • /
    • 2021
  • GPR43 (also known as FFAR2 or FFA2) is a G-protein-coupled receptor primarily expressed in immune cells, enteroendocrine cells and adipocytes that recognizes short-chain fatty acids, such as acetate, propionate, and butyrate, likely to be implicated in innate immunity and host energy homeostasis. Activated GPR43 suppresses the cAMP level and induces Ca2+ flux via coupling to Gαi and Gαq families, respectively. Additionally, GPR43 is reported to facilitate phosphorylation of ERK through G-protein-dependent pathways and interacts with β-arrestin 2 to inhibit NF-κB signaling. However, other G-protein-dependent and independent signaling pathways involving GPR43 remain to be established. Here, we have demonstrated that GPR43 augments Rho GTPase signaling. Acetate and a synthetic agonist effectively activated RhoA and stabilized YAP/TAZ transcriptional coactivators through interactions of GPR43 with Gαq/11 and Gα12/13. Acetate-induced nuclear accumulation of YAP was blocked by a GPR43-specific inverse agonist. The target genes induced by YAP/TAZ were further regulated by GPR43. Moreover, in THP-1-derived M1-like macrophage cells, the Rho-YAP/TAZ pathway was activated by acetate and a synthetic agonist. Our collective findings suggest that GPR43 acts as a mediator of the Rho-YAP/TAZ pathway.

GPCR 냉동보관 세포의 활용을 위한 냉동조건의 최적화 연구 (Optimization of the cryopreserved condition for utilization of GPCR frozen cells)

  • 노효진;이승호
    • 한국산학기술학회논문지
    • /
    • 제16권2호
    • /
    • pp.1200-1206
    • /
    • 2015
  • 신약 개발의 주요 표적이 되는 G-protein coupled receptor (GPCR)은 대부분의 생리적 활동에 관여하며 다양한 질병과 질환들에 관련되어 있다. GPCR을 타겟으로 하는 의약개발 연구에서 필수적인 실험방법으로 많이 활용되고 있는 세포기반 스크리닝 기술들은 사용되는 세포의 상태에 따라 데이터의 질이 좌우되는데 최근, 실험에 사용할 세포를 매번 배양하면서 소모되는 비용과 데이터의 변동을 줄이기 위해 냉동보관 세포를 적용하는 추세이다. 이에 본 연구에서는 단일 세포를 많은 양으로 배양하고 냉동 보관한 다음 사용되는 세포의 반응을 최적화하기 위하여 칼슘 검출을 위한 광 단백질이 포함된 세포주에 calcium sensing receptor와 urotensin II receptor가 안정적으로 발현되는 안정화 세포를 제작하고 $-80^{\circ}C$에서 보관한 다음 7 일 간격으로 실험했을 때 효능제와 길항제 반응을 비교하였다. 실험결과 보관기간이 증가함에 따라 세포 신호 값이 감소하였지만 $EC_{50}$$IC_{50}$ 값의 변화는 나타나지 않았다($EC_{50}:3.46{\pm}1.36mM$, $IC_{50}:0.49{\pm}0.15{\mu}M$). 그러나 액체질소에서 보관한 세포의 경우에서는 비냉동 세포와 비교하여 세포 신호 값이 감소했지만 보존기간에 따른 변화가 나타나지 않았으며 기간에 따른 $IC_{50}:0.49{\pm}0.15{\mu}M$$IC_{50}$의 변화도 없었다. 보관기간이 경과 될수록 세포의 신호 값이 감소하는 것은 세포 손상도 증가가 원인인 것으로 판단되며, 이러한 결과들로부터 장기간 냉동 보관을 위해서는 액체질소를 이용하는 것이 가장 효과적이고 한 달 이내 단기간 사용의 목적으로는 $-80^{\circ}C$ 보관조건도 가능할 것으로 판단된다. 이와 같이 냉동세포의 적극적인 활용을 통하여 초기 스크리닝 과정에서 나타나는 실험 유동성을 감소시킬 수 있을 것으로 예상된다.

The GABAB receptor associates with regulators of G-protein signaling 4 protein in the mouse prefrontal cortex and hypothalamus

  • Kim, Gyeongwha;Jung, Soonwoong;Son, Hyeonwi;Kim, Sujeong;Choi, Jungil;Lee, Dong Hoon;Roh, Gu Seob;Kang, Sang Soo;Cho, Gyeong Jae;Choi, Wan Sung;Kim, Hyun Joon
    • BMB Reports
    • /
    • 제47권6호
    • /
    • pp.324-329
    • /
    • 2014
  • Regulators of G-protein signaling (RGS) proteins regulate certain G-protein-coupled receptor (GPCR)-mediated signaling pathways. The GABAB receptor ($GABA_BR$) is a GPCR that plays a role in the stress response. Previous studies indicate that acute immobilization stress (AIS) decreases RGS4 in the prefrontal cortex (PFC) and hypothalamus (HY) and suggest the possibility of a signal complex composed of RGS4 and $GABA_BR$. Therefore, in the present study, we tested whether RGS4 associates with $GABA_BR$ in these brain regions. We found the co-localization of RGS4 and $GABA_BR$ subtypes in the PFC and HY using double immunohistochemistry and confirmed a direct association between $GABA_{B2}R$ and RGS4 proteins using co-immunoprecipitation. Furthermore, we found that AIS decreased the amount of RGS4 bound to $GABA_{B2}R$ and the number of double-positive cells. These results indicate that $GABA_BR$ forms a signal complex with RGS4 and suggests that RGS4 is a regulator of $GABA_BR$.

The Effect of Alpha Subunit of Go on Cell Growth

  • ;길성호
    • 대한의생명과학회지
    • /
    • 제12권4호
    • /
    • pp.385-391
    • /
    • 2006
  • Heterotrimeric GTP binding proteins (G proteins) mediate signals generated by neurotransmitters and hormones Among G proteins, Go is found in a large quantity in brain and growth cone membranes of neurons. In spite of its abundance in neurons, the role of Go is not fully understood. In our previous study, we identified promyelocytic leukemia zinc finger protein (PLZF) as an interacting partner of alpha subunit of Go ($Go{\alpha}$) and confirmed their interaction employing several biochemical assays. To date, it is reported that PLZF functioned as a cell growth suppressor and a transcription repressor. To determine effect of $Go{\alpha}$ and PLZF interaction on the cellular function of PLZF, we performed luciferase reporter gene assay and BrdU incorporation assay. Co-expression of $Go{\alpha}$ and PLZF synergistically increased the effect of PLZF alone. These results suggest that $Go{\alpha}$ may act as cellular activator of PLZF. This novel feature of Go may provide insights into understanding diverse role of Go-coupled receptor as well as its cellular actions.

  • PDF

Olfactory receptors in non-chemosensory tissues

  • Kang, NaNa;Koo, JaeHyung
    • BMB Reports
    • /
    • 제45권11호
    • /
    • pp.612-622
    • /
    • 2012
  • Olfactory receptors (ORs) detect volatile chemicals that lead to the initial perception of smell in the brain. The olfactory receptor (OR) is the first protein that recognizes odorants in the olfactory signal pathway and it is present in over 1,000 genes in mice. It is also the largest member of the G protein-coupled receptors (GPCRs). Most ORs are extensively expressed in the nasal olfactory epithelium where they perform the appropriate physiological functions that fit their location. However, recent whole-genome sequencing shows that ORs have been found outside of the olfactory system, suggesting that ORs may play an important role in the ectopic expression of non-chemosensory tissues. The ectopic expressions of ORs and their physiological functions have attracted more attention recently since MOR23 and testicular hOR17-4 have been found to be involved in skeletal muscle development, regeneration, and human sperm chemotaxis, respectively. When identifying additional expression profiles and functions of ORs in non-olfactory tissues, there are limitations posed by the small number of antibodies available for similar OR genes. This review presents the results of a research series that identifies ectopic expressions and functions of ORs in non-chemosensory tissues to provide insight into future research directions.

ADHD (주의력결핍 과잉행동장애) 생쥐 모델에서의 별아교세포 유래 신경전달물질 분석 (Analysis of Gliotransmitters in ADHD Mice)

  • 김가연;박재원;윤보은
    • 생명과학회지
    • /
    • 제28권5호
    • /
    • pp.597-604
    • /
    • 2018
  • ADHD (Attention Deficit/Hyperactivity Disorder)은 4-17세의 아동 및 청소년의 약 10%가 겪는 흔한 신경 발달 장애이지만 그 핵심 기전이 알려져 있지 않은 가운데 관련한 여러 단백질들이 보고되어왔다. 이중 GIT1 (G-protein coupled-receptor kinase interacting protein-1)은 중추신경계에서 dendritic spine formation와 growth에 영향을 미치는 multifunctional adaptor protein으로, GIT1이 제거된 생쥐는 과잉행동, 주의력결핍 그리고 충동성을 보이는 ADHD 증상을 보이게 된다. 이 논문에서는 GIT1 유전자 변형 생쥐를 이용하여 genotype별로 신경교세포의 전달물질(gliotransmitter)을 비교 분석하는 실험을 진행하였다. 그 결과 주요 흥분성 전달물질인 glutamate는 HE (hetero)와 KO (knock-out)의 세포 내에서 WT (wildtype)보다 더 높은 농도로 존재했다. 한편, 억제성 신경전달물질인 GABA와 glycine의 경우 전반적으로 HE에서 가장 많은 함유량을 보였지만 소뇌 세포내의 경우, KO이 WT보다 많은 양을 함유한 것에 비해 대뇌 세포 내에서는 KO보다 WT의 억제성 전달물질 함유량이 높았다. 또한, glutamate와 GABA를 기준으로 흥분성/억제성 비율(excitation/inhibition ratio)을 보았을 때, 소뇌 세포 내/외 모두에서 KO이 가장 높은 수치를 보였고, 대뇌에서는 세포 내/외 모두 HE에서 가장 높은 수치를 보였다. 억제성 신경전달물질인 GABA가 KO의 대뇌 세포 외에서 가장 많은 것으로 보아 GIT1 결손을 보완하기 위해 억제성 물질을 더 많이 분비하거나 또는 과도하게 분비된 GABA를 재흡수하지 못하는 것이라 사료된다. 이는 ADHD 병리기전으로써 기능할 가능성을 제시하며 후속 연구를 통해 해당 기전에 대한 규명이 필요할 것으로 보인다.

Pseudohypoparathyroidism: Clinical Review of Diagnosis and Genetic Etiology

  • Kyung Mi Jang
    • Journal of Interdisciplinary Genomics
    • /
    • 제5권2호
    • /
    • pp.29-31
    • /
    • 2023
  • Pseudohypoparathyroidism (PHP) is very rare and shows heterogeneity with impaired genetic components. PHP is characterized by parathyroid hormone resistance to target organ, related with a GNAS (guanine nucleotide-binding protein α-subunit) mutation and epimutation. PHP receptor is coupled with the stimulatory G protein which activates cyclic adenosine monophosphate formation. PHP type 1A is caused by inactivating mutations on the maternal allele of the GNAS whereas paternal allele mutations cause pseudopseudohypoparathyroidism. PHP type 1B is caused by abnormal patterns of methylation in differentially methylated region which can be divided into partial or complete. This disease has some difficulties to diagnose according to these different molecular alterations caused by complex genetic and epigenetic defects. According to this different molecular alterations, genetic confirmation must be done to discriminate their etiology.

Chromium acetate stimulates adipogenesis through regulation of gene expression and phosphorylation of adenosine monophosphate-activated protein kinase in bovine intramuscular or subcutaneous adipocytes

  • Kim, Jongkyoo;Chung, Kiyong;Johnson, Bradley J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권4호
    • /
    • pp.651-661
    • /
    • 2020
  • Objective: We hypothesized that Cr source can alter adipogenic-related transcriptional regulations and cell signaling. Therefore, the objective of the study was to evaluate the biological effects of chromium acetate (CrAc) on bovine intramuscular (IM) and subcutaneous (SC) adipose cells. Methods: Bovine preadipocytes isolated from two different adipose tissue depots; IM and SC were used to evaluate the effect of CrAc treatment during differentiation on adipogenic gene expression. Adipocytes were incubated with various doses of CrAc: 0 (differentiation media only, control), 0.1, 1, and 10 μM. Cells were harvested and then analyzed by real-time quantitative polymerase chain reaction in order to measure the quantity of adenosine monophosphate-activated protein kinase-α (AMPK-α), CCAAT enhancer binding protein-β (C/EBPβ), G protein-coupled receptor 41 (GPR41), GPR43, peroxisome proliferator-activated receptor-γ (PPARγ), and stearoyl CoA desaturase (SCD) mRNA relative to ribosomal protein subunit 9 (RPS9). The ratio of phosphorylated-AMPK (pAMPK) to AMPK was determined using a western blot technique in order to determine changing concentration. Results: The high dose (10 μM) of CrAc increased C/EBPβ, in both IM (p = 0.02) and SC (p = 0.02). Expression of PPARγ was upregulated by 10 μM of CrAc in IM but not in SC. Expression of SCD was also increased in both IM and SC with 10 μM of CrAc treatment. Addition of CrAc did not alter gene expression of glucose transporter 4, GPR41, or GPR43 in both IM and SC adipocytes. Addition of CrAc, resulted in a decreased pAMPKα to AMPKα ration (p<0.01) in IM. Conclusion: These data may indicate that Cr source may influence lipid filling in IM adipocytes via inhibitory action of AMPK phosphorylation and upregulating expression of adipogenic genes.

miR-374 promotes myocardial hypertrophy by negatively regulating vascular endothelial growth factor receptor-1 signaling

  • Lee, Jong Sub;Song, Dong Woo;Park, Jei Hyoung;Kim, Jin Ock;Cho, Chunghee;Kim, Do Han
    • BMB Reports
    • /
    • 제50권4호
    • /
    • pp.208-213
    • /
    • 2017
  • Vascular endothelial growth factor (VEGF) is an essential cytokine that has functions in the formation of new blood vessels and regression of cardiac hypertrophy. VEGF/VEGF-receptor-1 (VEGFR1) signaling plays a key role in the regression of cardiac hypertrophy, whereas VEGF/VEGFR2 signaling leads to cardiac hypertrophy. In this study, we identified the prohypertrophic role of miR-374 using neonatal rat ventricular myocytes (NRVMs). Our results showed that overexpression of miR-374 activated G protein-coupled receptor-mediated prohypertrophic pathways by the inhibition of VEGFR1-dependent regression pathways. Luciferase assays revealed that miR-374 could directly target the 3'-untranslated regions of VEGFR1 and cGMP-dependent protein kinase-1. Collectively, these findings demonstrated that miR-374 was a novel pro-hypertrophic microRNA functioning to suppress the VEGFR1-mediated regression pathway.