• Title/Summary/Keyword: G-protein antagonist

Search Result 68, Processing Time 0.027 seconds

Signaling Pathway of Lysophosphatidic Acid-Induced Contraction in Feline Esophageal Smooth Muscle Cells

  • Nam, Yun Sung;Suh, Jung Sook;Song, Hyun Ju;Sohn, Uy Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.139-147
    • /
    • 2013
  • Lysolipids such as LPA, S1P and SPC have diverse biological activities including cell proliferation, differentiation, and migration. We investigated signaling pathways of LPA-induced contraction in feline esophageal smooth muscle cells. We used freshly isolated smooth muscle cells and permeabilized cells from cat esophagus to measure the length of cells. Maximal contraction occurred at $10^{-6}M$ and the response peaked at 30s. To identify LPA receptor subtypes in cells, western blot analysis was performed with antibodies to LPA receptor subtypes. LPA1 and LPA3 receptor were detected at 50 kDa and 44 kDa. LPA-induced contraction was almost completely blocked by LPA receptor (1/3) antagonist KI16425. Pertussis toxin (PTX) inhibited the contraction induced by LPA, suggesting that the contraction is mediated by a PTX-sensitive G protein. Phospholipase C (PLC) inhibitors U73122 and neomycin, and protein kinase C (PKC) inhibitor GF109203X also reduced the contraction. The PKC-mediated contraction may be isozyme-specific since only $PKC{\varepsilon}$ antibody inhibited the contraction. MEK inhibitor PD98059 and JNK inhibitor SP600125 blocked the contraction. However, there is no synergistic effect of PKC and MAPK on the LPA-induced contraction. In addition, RhoA inhibitor C3 exoenzyme and ROCK inhibitor Y27632 significantly, but not completely, reduced the contraction. The present study demonstrated that LPA-induced contraction seems to be mediated by LPA receptors (1/3), coupled to PTX-sensitive G protein, resulting in activation of PLC, PKC-${\varepsilon}$ pathway, which subsequently mediates activation of ERK and JNK. The data also suggest that RhoA/ROCK are involved in the LPA-induced contraction.

Impact on Inflammation and Recovery of Skin Barrier by Nordihydroguaiaretic Acid as a Protease-Activated Receptor 2 Antagonist

  • Kim, Hyo-Young;Goo, Jung-Hyun;Joo, Yeon-Ah;Lee, Ha-Yoen;Lee, Se-Mi;Oh, Chang-Taek;Ahn, Soo-Mi;Kim, Nam-Hoon;Hwang, Jae-Sung
    • Biomolecules & Therapeutics
    • /
    • v.20 no.5
    • /
    • pp.463-469
    • /
    • 2012
  • Atopic dermatitis is a chronic, inflammatory disease of the skin with increased transepidermal water loss. Both an abnormal inflammatory response and a defective skin barrier are known to be involved in the pathogenesis of atopic dermatitis. Protease activated receptor 2 (PAR2) belongs to a family of G-protein coupled receptors and is activated by both trypsin and a specific agonist peptide, SLIGKV-$NH_2$. PAR2 is expressed in suprabasal layers of the epidermis and regulates inflammatory responses and barrier homeostasis. In this study, we show that nordihydroguaiaretic acid (NDGA) inhibits the PAR2-mediated signal pathway and plays a role in skin barrier recovery in atopic dermatitis. Specifically, NDGA reduces the mobilization of intracellular $Ca^{2+}$ in HaCaT keratinocytes by down-regulating inflammatory mediators, such as interleukin-8, thymus and activation-regulated chemokine and intercellular cell adhesion molecule-1 in HaCaT keratinocytes. Also, NDGA decreases the protein expression of involucrin, a differentiation maker of keratinocyte, in both HaCaT keratinocytes and normal human epidermal keratinocytes. We examined NDGA-recovered skin barrier in atopic dermatitis by using an oxazolone-induced atopic dermatitis model in hairless mice. Topical application of NDGA produced an increase in transepidermal water loss recovery and a decrease in serum IgE level, without weight loss. Accordingly, we suggest that NDGA acts as a PAR2 antagonist and may be a possible therapeutic agent for atopic dermatitis.

Transformation of Mosquito Larvicidal Bdillus sphaericus 1593 by Plasmid pGB215-110$\Delta$B (모기유충 방제균 Bacillus sphaericus 1593의 형질전환 조건)

  • 한길환;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.2
    • /
    • pp.156-163
    • /
    • 1995
  • Bacillus sphaericus 1593 is pathogenic to the larvae of a number of mosquito species that are known as important vectors for the transmission of certain human and animal diseases. As a preliminary experiment for developing a multfunctional B. sphaericus 1593 as a potent antagonist, we investigated the conditions for the protoplast transformation system of B. sphaericus 1593 using the plasmid pGB215-110$\Delta$B. The protoplast of B. sphaericus 1593 were obtained most efficiency by treating the cells with 500 $\mu$g/ml of lysozyme in the SMM buffer containing 0.5 M sucrose at pH 8.0 and 40$\circ$C for 60 minutes. The cell wall was regenerated on the plate containing 1.2% agar and 0.8 M mannitol. Under the best condition for protoplast formation and regeneration established in the work the highest frequency of transformation was achieved with the 40% PEG (M.W 4,000) treatment for 15 minutes of incubation at 4$\circ$C, and subsequently for 120 minutes incubation at 30$\circ$C for phenotypic expression. The highest transformation efficiency were observed at 1.0 $\mu$g/ml of the final concentration of the plasmid DNA and the plasmids were found to be fairly stable since about 70% of the plasmids were maintained after 8 successive daily transfers onto the fresh medium.

  • PDF

Carbachol Regulates Pacemaker Activities in Cultured Interstitial Cells of Cajal from the Mouse Small Intestine

  • So, Keum Young;Kim, Sang Hun;Sohn, Hong Moon;Choi, Soo Jin;Parajuli, Shankar Prasad;Choi, Seok;Yeum, Cheol Ho;Yoon, Pyung Jin;Jun, Jae Yeoul
    • Molecules and Cells
    • /
    • v.27 no.5
    • /
    • pp.525-531
    • /
    • 2009
  • We studied the effect of carbachol on pacemaker currents in cultured interstitial cells of Cajal (ICC) from the mouse small intestine by muscarinic stimulation using a whole cell patch clamp technique and $Ca^{2+}$-imaging. ICC generated periodic pacemaker potentials in the current-clamp mode and generated spontaneous inward pacemaker currents at a holding potential of -70 mV. Exposure to carbachol depolarized the membrane and produced tonic inward pacemaker currents with a decrease in the frequency and amplitude of the pacemaker currents. The effects of carbachol were blocked by 1-dimethyl-4-diphenylacetoxypiperidinium, a muscarinic $M_3$ receptor antagonist, but not by methotramine, a muscarinic $M_2$ receptor antagonist. Intracellular $GDP-{\beta}-S$ suppressed the carbachol-induced effects. Carbachol-induced effects were blocked by external $Na^+$-free solution and by flufenamic acid, a non-selective cation channel blocker, and in the presence of thapsigargin, a $Ca^{2+}$-ATPase inhibitor in the endoplasmic reticulum. However, carbachol still produced tonic inward pacemaker currents with the removal of external $Ca^{2+}$. In recording of intracellular $Ca^{2+}$ concentrations using fluo 3-AM dye, carbachol increased intracellular $Ca^{2+}$ concentrations with increasing of $Ca^{2+}$ oscillations. These results suggest that carbachol modulates the pacemaker activity of ICC through the activation of non-selective cation channels via muscarinic $M_3$ receptors by a G-protein dependent intracellular $Ca^{2+}$ release mechanism.

LJ-2698, an Adenosine A3 Receptor Antagonist, Alleviates Elastase-Induced Pulmonary Emphysema in Mice

  • Boo, Hye-Jin;Park, So Jung;Noh, Myungkyung;Min, Hye-Young;Jeong, Lak Shin;Lee, Ho-Young
    • Biomolecules & Therapeutics
    • /
    • v.28 no.3
    • /
    • pp.250-258
    • /
    • 2020
  • Emphysema, a major component of chronic obstructive pulmonary disease (COPD), is a leading cause of human death worldwide. The progressive deterioration of lung function that occurs in the disease is caused by chronic inflammation of the airway and destruction of the lung parenchyma. Despite the main impact of inflammation on the pathogenesis of emphysema, current therapeutic regimens mainly offer symptomatic relief and preservation of lung function with little therapeutic impact. In the present study, we aimed to discover novel therapeutics that suppress the pathogenesis of emphysema. Here, we show that LJ-2698, a novel and highly selective antagonist of the adenosine A3 receptor, a G protein-coupled receptor involved in various inflammatory diseases, significantly reversed the elastase-induced destructive changes in murine lungs. We found that LJ-2698 significantly prevented elastase-induced airspace enlargement, resulting in restoration of pulmonary function without causing any obvious changes in body weight in mice. LJ-2698 was found to inhibit matrix metalloproteinase activity and pulmonary cell apoptosis in the murine lung. LJ-2698 treatment induced increases in anti-inflammatory cytokines in macrophages at doses that displayed no significant cytotoxicity in normal cell lines derived from various organs. Treatment with LJ-2698 significantly increased the number of anti-inflammatory M2 macrophages in the lungs. These results implicate the adenosine A3 receptor in the pathogenesis of emphysema. Our findings also demonstrate the potential of LJ-2698 as a novel therapeutic/preventive agent in suppressing disease development with limited toxicity.

Brief low [Mg2+]o-induced Ca2+ spikes inhibit subsequent prolonged exposure-induced excitotoxicity in cultured rat hippocampal neurons

  • Kim, Hee Jung;Yang, Ji Seon;Yoon, Shin Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.1
    • /
    • pp.101-109
    • /
    • 2016
  • Reducing $[Mg^{2+}]_o$ to 0.1 mM can evoke repetitive $[Ca^{2+}]_i$ spikes and seizure activity, which induces neuronal cell death in a process called excitotoxicity. We examined the issue of whether cultured rat hippocampal neurons preconditioned by a brief exposure to 0.1 mM $[Mg^{2+}]_o$ are rendered resistant to excitotoxicity induced by a subsequent prolonged exposure and whether $Ca^{2+}$ spikes are involved in this process. Preconditioning by an exposure to 0.1 mM $[Mg^{2+}]_o$ for 5 min inhibited significantly subsequent 24 h exposure-induced cell death 24 h later (tolerance). Such tolerance was prevented by both the NMDA receptor antagonist D-AP5 and the L-type $Ca^{2+}$ channel antagonist nimodipine, which blocked 0.1 mM $[Mg^{2+}]_o$-induced $[Ca^{2+}]_i$ spikes. The AMPA receptor antagonist NBQX significantly inhibited both the tolerance and the $[Ca^{2+}]_i$ spikes. The intracellular $Ca^{2+}$ chelator BAPTA-AM significantly prevented the tolerance. The nonspecific PKC inhibitor staurosporin inhibited the tolerance without affecting the $[Ca^{2+}]_i$ spikes. While $G{\ddot{o}}6976$, a specific inhibitor of $PKC{\alpha}$ had no effect on the tolerance, both the $PKC{\varepsilon}$ translocation inhibitor and the $PKC{\zeta}$ pseudosubstrate inhibitor significantly inhibited the tolerance without affecting the $[Ca^{2+}]_i$ spikes. Furthermore, JAK-2 inhibitor AG490, MAPK kinase inhibitor PD98059, and CaMKII inhibitor KN-62 inhibited the tolerance, but PI-3 kinase inhibitor LY294,002 did not. The protein synthesis inhibitor cycloheximide significantly inhibited the tolerance. Collectively, these results suggest that low $[Mg^{2+}]_o$ preconditioning induced excitotoxic tolerance was directly or indirectly mediated through the $[Ca^{2+}]_i$ spike-induced activation of $PKC{\varepsilon}$ and $PKC{\xi}$, JAK-2, MAPK kinase, CaMKII and the de novo synthesis of proteins.

Association of a Methanol Extract of Rheum undulatum L. Mediated Cell Death in AGS Cells with an Intrinsic Apoptotic Pathway

  • Hong, Noo Ri;Park, Hyun Soo;Ahn, Tae Seok;Jung, Myeong Ho;Kim, Byung Joo
    • Journal of Pharmacopuncture
    • /
    • v.18 no.2
    • /
    • pp.26-32
    • /
    • 2015
  • Objectives: Rheum undulatum L. has traditionally been used for the treatment of many diseases in Asia. However, its anti-proliferative activity in cancer has still not been studied. In the present study, we investigated the anti-cancer effects of methanol extract of Rheum undulatum L. (MERL) on human adenocarcinoma gastric cell lines (AGS). Methods: To investigate the anti-cancer effect of MERL on AGS cells, we treated the AGS cells with varying concentrations of MERL and performed 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assays. Cell cycle analyses, measurements of the mitochondrial membrane potential (MMP), caspase activity assays and Western blots were conducted to determine whether AGS cell death occurred by apoptosis. Results: Treatment with MERL significantly inhibited growth of AGS cells in a concentration dependent manner. MERL treatment in AGS cells leaded to increased accumulation of apoptotic sub G1 phase cells in a concentration dependent manner. In control cultures, 5.38% of the cells were in the sub G1 phase. In MERL treated cells, however, this percentage was significantly increased (9.95% at $70{\mu}g/mL$, 15.94% at $140{\mu}g/mL$, 26.56% at $210{\mu}g/mL$ and 38.08% at $280{\mu}g/mL$). MERL treatment induced the decreased expression of pro-caspase-8 and -9 in a concentration dependent manner, whereas the expression of the active form of caspase-3 was increased. A subsequent Western blot analysis revealed increased cleaved levels of poly (ADP-ribose) polymerase (PARP) protein. Also, treatment with MERL increased the activities of caspase-3 and -9 compared with the control. MERL treatment increased the levels of the pro-apoptotic truncated Bid (tBid) and Bcl2 Antagonist X (Bax) proteins and decreased the levels of the anti-apoptotic B-cell lymphoma 2 (Bcl-2) protein, whose is the stabilization of mitochondria. However, inhibitions of p38, extracellular signal regulated kinases (ERKs) and C-Jun N-terminal kinases (JNK) by MERL treatment did not affect cell death. Conclusion: These results suggest that MERL mediated cell death is associated with an intrinsic apoptotic pathway in AGS cells.

Aequorin Based Functional Assessment of the Melanin Concentrating Hormone Receptor by Intracellular Calcium Mobilization

  • Lee, Sung-Hou
    • Biomolecules & Therapeutics
    • /
    • v.18 no.2
    • /
    • pp.152-158
    • /
    • 2010
  • Melanin concentrating hormone is a neuropeptide highly expressed in the brain that regulates several physiological functions mediated by receptors in the G-protein coupled receptor family, especially plays an important role in the complex regulation of energy balance and body weight mediated by the melanin concentrating hormone receptor subtype 1 (MCH1). Compelling pharmacological evidence implicating MCH1 signaling in the regulation of food intake and energy expenditure has generated a great deal of interest by pharmaceutical companies as MCH1 antagonists may have potential therapeutic benefit in the treatment of obesity and metabolic syndrome. Although fluorescence-based calcium mobilization assay platform has been one of the most widely accepted tools for receptor research and drug discovery, fluorescence interference and shallow assay window limit their application in high throughput screening and have led to a growing interest in alternative, luminescence-based technologies. Herein, a luminescence-based functional assay system for the MCH1 receptor was developed and validated with the mitochondrial targeted aequorin. Aequorin based functional assay system for MCH1 presented excellent Z' factor (0.8983) and high signal-to-noise ratio (141.9). The nonpeptide MCH1 receptor antagonist, SNAP 7941 and GSK 803430, exhibited $IC_{50}$ values of 0.62 ${\pm}$ 0.11 and 12.29 ${\pm}$ 2.31 nM with excellent correlation coefficient. These results suggest that the aequorin based assay system for MCH1 is a strong alternative to the traditional GPCR related tools such as radioligand binding experiments and fluorescence functional determinations for the compound screening and receptor research.

Modulation of Corydalis tuber on Glycine-induced Ion Current in Acutely Dissociated Rat Periaqueductal Gray Neuron

  • Cheong, Byung-Shik;Nam, Sang-Soo;Choi, Do-Young
    • The Journal of Korean Medicine
    • /
    • v.24 no.4
    • /
    • pp.34-42
    • /
    • 2003
  • This study was designed to investigate the modulation of the Corydalis tuber on glycine-activated ion current in rat periaqueductal gray (PAG) neurons. Aqueous extract from Corydalis tuber has been widely used for pain control such as dysmenorrhea, irregular menstruation or amenorrhea with abdominal cramping, neuralgia, headache and gastrointestinal spasm. The PAG region of the brain is known to be involved heavily with nociception. Modulation of the Corydalis tuber on glycine-induced ion current in rat periaqueductal gray (PAG) neurons was studied by a nystatin-perforated patch-clamp technique. High concentrations of Corydalis tuber elicited ion current, which was suppressed by strychnine application. Low concentrations of Corydalis tuber reduced glycine-induced ion currents in the PAG neurons. Inhibitory action of Corydalis tuber on glycine-activated ion current was reduced by treatment with naltrexone, a non- selective opioid antagonist. Application of N-methylmalemide (NEM), a sulfhydryl alkylating agent, also reduced the inhibitory action of Corydalis tuber on glycine-activated ion current in the PAG neurons. These results suggest that the inhibitory effect of Corydalis tuber on glycine-activated ion current in the PAG neurons is one of the analgesic mechanisms of the Corydalis tuber, which may activate descending pain control system in PAG neurons.

  • PDF

Modulatory Effect of Diethylstilbestrol on CD29-Mediated Cell-cell Adhesion in Monocytic U937 Cells (Diethylstilbestrol의 단핵구의 세포간 유착과정 조절효과)

  • Kim, Byung-Hun;Cho, Jae-Youl
    • YAKHAK HOEJI
    • /
    • v.52 no.2
    • /
    • pp.111-116
    • /
    • 2008
  • Diethylstilbestrol (DESB) is a synthetic estrogen not only that routinely prescribed, but also that known to be a teratogen. In this study, we found a novel pharmacological feature that DESB is able to positively modulate CD29 $({\beta}1-integrin)$ function. Thus, DESB up-regulated homotypic cell-cell adhesion of monocytic U937 cells mediated by CD29. However, DESB did not increase the surface level of CD29 and its binding activity to ligand (fibronectin), according to flow cytometric analysis and cell-fibronectin adhesion assay. Instead, the DESB-mediated up-regulation of cell-cell adhesion was blocked by several signaling enzyme inhibitors. Treatment of U0126 [an extracellular signal-regulated kinase (ERK) inhibitor], SB20358 (a p38 inhibitor) or Rp-8-pCPT-cGMP (a protein kinase G inhibitor) clearly inhibited DESB-mediated up-regulation of cell-cell adhesion induced by CD29. However, estrogen receptor antagonist ICI 182,780 failed to abrogate DESB effect. Therefore, our data suggest that DESB may up-regulate CD29-mediated cell-cell adhesion via modulating intracellular signaling enzymes such as ERK, PKG, and p38, independent of estrogen receptor function.