• 제목/요약/키워드: G-protein antagonist

검색결과 67건 처리시간 0.028초

Losartan Inhibits Vascular Smooth Muscle Cell Proliferation through Activation of AMP-Activated Protein Kinase

  • Kim, Jung-Eun;Choi, Hyoung-Chul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권5호
    • /
    • pp.299-304
    • /
    • 2010
  • Losartan is a selective angiotensin II (Ang II) type 1 ($AT_1$) receptor antagonist which inhibits vascular smooth muscle cells (VSMCs) contraction and proliferation. We hypothesized that losartan may prevent cell proliferation by activating AMP-activated protein kinase (AMPK) in VSMCs. VSMCs were treated with various concentrations of losartan. AMPK activation was measured by Western blot analysis and cell proliferation was measured by MTT assay and flowcytometry. Losartan dose- and time-dependently increased the phosphorylation of AMPK and its downstream target, acetyl-CoA carboxylase (ACC) in VSMCs. Losartan also significantly decreased the Ang II- or 15% FBS-induced VSMC proliferation by inhibiting the expression of cell cycle associated proteins, such as p-Rb, cyclin D, and cyclin E. Compound C, a specific inhibitor of AMPK, or AMPK siRNA blocked the losartan-induced inhibition of cell proliferation and the $G_0/G_1$ cell cycle arrest. These data suggest that losartan-induced AMPK activation might attenuate Ang II-induced VSMC proliferation through the inhibition of cell cycle progression.

Possible target for G protein antagonist: Identification of specific amino acid residue responsible for the molecular interaction of G$\alpha$ 16 with chemoattractant C5a receptor.

  • 이창호
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2000년도 춘계학술대회
    • /
    • pp.17-19
    • /
    • 2000
  • Heterotrimeric G Proteins transduce ligand binding to a wide variety of seven transmembrane cell surface receptors into intracellular signals. The currently accepted model for the activation of G protein suggests that ligand-activated receptor accelerates GDP-GTP exchange reactions on the ${\alpha}$ subunit of the heterotrimeric G protein. At least seventeen distinct isoforms of the G${\alpha}$ subunit protein have been identified in mammalian organisms. Among them, the G${\alpha}$q family consists of five members whose ${\alpha}$ subunits show different expression patterns. G${\alpha}$q and G${\alpha}$11 seem to be almost ubiquitously expressed, whereas G${\alpha}$14 is predominantly expressed in spleen, lung, kidney and testis. G${\alpha}$16 and its murine counterpart G${\alpha}$15 are expressed in hematopoietic cells and has been shown to couple a wide variety of receptors to phosphoinositide-specific phospholipase C activity. Beta-isoforms of phospholipase C were shown to be activated by all members of G${\alpha}$q family, i.e., G${\alpha}$q, G${\alpha}$11, G${\alpha}$l4 and G${\alpha}$16 subunits either in reconstitution system. or in experiments using cDNA transfection with intact Cos-7 cells.

  • PDF

생쥐 소장 카할세포의 pacemaker potential에서 미르타자핀 효능에 관한 연구 (Mirtazapine Regulates Pacemaker Potentials of Interstitial Cells of Cajal in Murine Small Intestine)

  • 김병주
    • 생명과학회지
    • /
    • 제31권7호
    • /
    • pp.662-670
    • /
    • 2021
  • 카할세포는 위장관 근육의 pacemaker 세포이다. 이번 연구는 생쥐 소장에서 얻은 카할세포를 배양하여 노르아드레날린성 및 세로토닌성 항우울제인 미르타자핀의 효과를 조사했다. 전기생리학적인 방법을 이용하여 카할세포의 pacemaker potential의 변화를 측정하였다. 미르타자핀은 농도 의존적 방식으로 카할세포 탈분극을 일으켰다. Y25130 (5-HT3 수용체 길항제), RS39604 (5-HT4 수용체 길항제) 또는 SB269970 (5-HT7 수용체 길항제)은 미르타자핀에 의한 카할세포 탈분극에 영향을 미치지 않았다. 또한, 무스카린성 M2 수용체 길항제인 메톡 트라민은 미르타자핀에 의한 카할세포의 탈분극에 영향을 미치지 않은 반면, 무스카린성 M3 수용체 길항제인 4-DAMP는 카할세포의 탈분극을 억제하였다. GDP-β-S를 피펫을 통해 카할세포내로 넣었을 때, 미르타자핀에 카할세포 탈분극이 억제되었다. 외부에 칼슘이 없는 용액 또는 소포체의 Ca2+-ATPase 억제제인 thapsigargin이 있는 경우 미르타자핀에 의한 카할세포 탈분극이 나타났다. 또한, protein kinase C (PKC) 억제제인 칼포스틴 C 또는 chelerythrine은 미르타자핀에 의한 탈분극을 억제했습니다. 이러한 결과는 미르 타자핀이 카할세포에서 G 단백질 및 PKC 경로에 의한 무스카린성 M3 수용체 활성화를 통해 탈분극을 조절 함을 알 수 있다. 따라서 미르타자핀이 카할세포를 통해 위장관 운동성을 조절할 수 있음을 시사한다.

Muscarine $M_2$ Receptor-mediated Presynaptic Inhibition of GABAergic Transmission in Rat Meynert Neurons

  • Jang, Il-Sung;Akaike, Norio
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제6권2호
    • /
    • pp.63-70
    • /
    • 2002
  • Cholinergic modulation of GABAergic spontaneous miniature inhibitory postsynaptic currents (mIPSCs) by the activation of muscarine receptors was investigated in mechanically dissociated rat nucleus basalis of the Meynert neurons using the conventional whole-cell patch recording configuration. Muscarine $(10{\mu}M)$ reversibly and concentration-dependently decreased mIPSC frequency without affecting the current amplitude distribution. Muscarine action on GABAergic mIPSCs was completely blocked by $1{\mu}M$ methoctramine, a selective $M_2$ receptor antagonist, but not by $1{\mu}M$ pirenzepine, a selective $M_1$ receptor antagonist. NEM $(10{\mu}M),$ a G-protein uncoupler, attenuated the inhibitory action of muscarine on GABAergic mIPSC frequency. Muscarine still could decrease GABAergic mIPSC frequency even in the $Ca^{2+}-free$ external solution. However, the inhibitory action of muscarine on GABAergic mIPSCs was completely occluded in the presence of forskolin. The results suggest that muscarine acts presynaptically and reduces the probability of spontaneous GABA release, and that such muscarine-induced inhibitory action seems to be mediated by G-protein-coupled $M_2$ receptors, via the reduction of cAMP production. Accordingly, $M_2$ receptor-mediated disinhibition of nBM neurons might play one of important roles in the regulation of cholinergic outputs from nBM neurons as well as the excitability of nBM neurons themselves.

Calcium Ions are Involved in Modulation of Melittin-induced Nociception in Rat: I. Effect of Voltage-gated Calcium Channel Antagonist

  • Shin, Hong-Kee;Lee, Kyung-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제10권5호
    • /
    • pp.255-261
    • /
    • 2006
  • Melittin-induced nociceptive responses are mediated by selective activation of capsaicin-sensitive primary afferent fibers and are modulated by excitatory amino acid receptor, cyclooxygenase, protein kinase C and serotonin receptor. The present study was undertaken to investigate the peripheral and spinal actions of voltage-gated calcium channel antagonists on melittin-induced nociceptive responses. Changes in mechanical threshold and number of flinchings were measured after intraplantar (i.pl.) injection of melittin $(30\;{\mu}g/paw)$ into mid-plantar area of hindpaw. L-type calcium channel antagonists, verapamil [intrathecal (i.t.), 6 or $12\;{\mu}g$; i.pl.,100 & $200\;{\mu}g$; i.p., 10 or 30 mg], N-type calcium channel blocker, ${\omega}-conotoxin$ GVIA (i.t., 0.1 or $0.5\;{\mu}g$; i.pl., $5\;{\mu}g$) and P-type calcium channel antagonist, ${\omega}-agatoxin$ IVA (i.t., $0.5\;{\mu}g$; i.pl., $5\;{\mu}g$) were administered 20 min before or 60 min after i.pl. injection of melittin. Intraplantar pre-treatment and i.t. pre- or post-treatment of verapamil and ${\omega}-conotoxin$ GVIA dose-dependently attenuated the reduction of mechanical threshold, and melittin-induced flinchings were inhibited by i.pl. or i.t. pre-treatment of both antagonists. P-type calcium channel blocker, ${\omega}-agatoxin$ IVA, had significant inhibitory action on flinching behaviors, but had a limited effect on melittin-induced decrease in mechanical threshold. These experimental findings suggest that verapamil and ${\omega}-conotoxin$ GVIA can inhibit the development and maintenance of melittin-induced nociceptive responses.

P2Y6 수용체 길항제의 파골세포 분화 촉진 효과 규명 (The Stimulatory Effect of P2Y6 Receptor Antagonist on RANKL-induced Osteoclastogenesis)

  • 노아롱새미;문미란;임미정
    • 약학회지
    • /
    • 제59권5호
    • /
    • pp.207-214
    • /
    • 2015
  • P2Y receptors, a type of P2 receptor family, are G-protein coupled receptors and 8 subtypes have been characterized ($P2Y_1$, $P2Y_2$, $P2Y_4$, $P2Y_6$, $P2Y_{11-14}$). Recently, several studies have shed light on the role of P2Y receptors in bone biology. Among them, little is known on the role of $P2Y_6$ receptor on osteoclast differentiation. Thus, we investigated the role of $P2Y_6$ receptor on osteoclastogenesis using $P2Y_6$ receptor selective antagonist, MRS 2578. When osteoblasts and bone marrow cells were co-cultured in the presence of $VitD_3$ and $PGE_2$, $P2Y_6$ antagonist increased the formation of TRAP positive osteoclasts. To elucidate the target cells of $P2Y_6$ antagonist, we first checked the effect of MRS 2578 on osteoblasts. Treatment of MRS 2578 did not affect OPG : RANKL mRNA ratio in osteoblasts. Next, we checked the effects of $P2Y_6$ antagonist on osteoclast precursors using mouse bone marrow macrophages (BMMs). Addition of MRS 2578 increased the number of osteoclasts in RANKL-treated BMMs. Although $P2Y_6$ antagonist had no effect on RANKL-induced NFATc1, c-Fos and MafB expression levels, it significantly stimulated RANKL-induced Blimp1 mRNA expression in BMMs. Taken together, these data indicate that $P2Y_6$ antagonist increases osteoclast formation by upregulation of Blimp1 expression.

Peripheral Cellular Mechanisms of Artemin-induced Thermal Hyperalgesia in Rats

  • Kim, Hye-Jin;Yang, Kui-Ye;Lee, Min-Kyung;Park, Min-Kyoung;Son, Jo-Young;Ju, Jin-Sook;Ahn, Dong-Kuk
    • International Journal of Oral Biology
    • /
    • 제42권1호
    • /
    • pp.1-8
    • /
    • 2017
  • In the present study, we investigated the role of peripheral ionotropic receptors in artemin-induced thermal hyperalgesia in the orofacial area. Male Sprague-Dawley rats weighting 230 to 280 g were used in the study. Under anesthesia, a polyethylene tube was implanted in the subcutaneous area of the vibrissa pad, which enabled drug-injection. After subcutaneous injection of artemin, changes in air-puff thresholds and head withdrawal latency time were evaluated. Subcutaneous injection of artemin (0.5 or $1{\mu}g$) produced significant thermal hyperalgesia in a dose-dependent manner. However, subcutaneous injection of artemin showed no effect on air-puff thresholds. IRTX ($4{\mu}g$), a TRPV1 receptor antagonist, D-AP5 (40 or $80{\mu}g$), an NMDA receptor antagonist, or NBQX (20 or $40{\mu}g$), an AMPA receptor antagonist, was injected subcutaneously 10 min prior to the artemin injection. Pretreatment with IRTX and D-AP5 significantly inhibited the artemin-induced thermal hyperalgesia. In contrast, pretreatment with both doses of NBQX showed no effect on artemin-induced thermal hyperalgesia. Moreover, pretreatment with H-89, a PKA inhibitor, and chelerythrine, a PKC inhibitor, decreased the artemin-induced thermal hyperalgesia. These results suggested that artemin-induced thermal hyperalgesia is mediated by the sensitized peripheral TRPV1 and NMDA receptor via activation of protein kinases.

Effects of Morphine and Panax ginseng on the Opioid Receptor-G protein Interactions

  • Kim, Young-Ran;Kim, Ae-young;Kim, Kyeong-Man
    • Biomolecules & Therapeutics
    • /
    • 제7권1호
    • /
    • pp.1-6
    • /
    • 1999
  • Effects of Panax ginseng on the morphine toxicity were studied in relation to its effects on the opioid receptor-G protein interactions. Morphine treatments (3 days) reduced the body weight increment rate and the weight of the thymus and spleen. These changes were usually recovered by the concomitant administration of ginseng total saponin (GTS) but occasionally further deteriorated. This discrepancy was studied in relation to the opioid receptor coupling to G protein, that is, the effects of morphine and GTS on the opioid receptors were studied using the antagonist-agonist competitive binding studies. When GTS recovered the morphine toxicity, morphine shifted the striatal $\delta$ receptors to slightly higher affinity state, and this was partly recovered by the GTS treatment. However, morphine did not have any effect on the affinity state of $\delta$ receptor from NG108-15 cells, suggesting that additional factors were needed for the modulation of the affinity states of $\delta$ receptor. Effects of morphine and GTS on $\mu$ receptor were complicate and variable, and we could not reach a clear conclusion. The morphine toxicity might accompany complicate biological involvements, and the modulation of the affinity states of the opioid receptors might explain a part of the effects of GTS on the morphine toxicity.

  • PDF

Involvement of Amino Acids Flanking Glu7.32 of the Gonadotropin-releasing Hormone Receptor in the Selectivity of Antagonists

  • Wang, Chengbing;Oh, Da Young;Maiti, Kaushik;Kwon, Hyuk Bang;Cheon, Jun;Hwang, Jong-Ik;Seong, Jae Young
    • Molecules and Cells
    • /
    • 제25권1호
    • /
    • pp.91-98
    • /
    • 2008
  • The Glu/$Asp^{7.32}$ residue in extracellular loop 3 of the mammalian type-I gonadotropin-releasing hormone receptor (GnRHR) interacts with $Arg^8$ of GnRH-I, conferring preferential ligand selectivity for GnRH-I over GnRH-II. Previously, we demonstrated that the residues (Ser and Pro) flanking Glu/$Asp^{7.32}$ also play a role in the differential agonist selectivity of mammalian and non-mammalian GnRHRs. In this study, we examined the differential antagonist selectivity of wild type and mutant GnRHRs in which the Ser and Pro residues were changed. Cetrorelix, a GnRH-I antagonist, and Trptorelix-2, a GnRH-II antagonist, exhibited high selectivity for mammalian type-I and non-mammalian GnRHRs, respectively. The inhibitory activities of the antagonists were dependent on agonist concentration and subtype. Rat GnRHR in which the Ser-Glu-Pro (SEP) motif was changed to Pro-Glu-Val (PEV) or Pro-Glu-Ser (PES) had increased sensitivity to Trptorelix-2 but decreased sensitivity to Cetrorelix. Mutant bullfrog GnRHR-1 with the SEP motif had the reverse antagonist selectivity, with reduced sensitivity to Trptorelix-2 but increased sensitivity to Cetrorelix. These findings indicate that the residues flanking $Glu^{7.32}$ are important for antagonist as well as agonist selectivity.

Analysis of the Potent Platelet Glycoprotein IIb-IIIa Antagonist from Natural Sources

  • Kang, In-Cheol;Kim, Doo-Sik
    • BMB Reports
    • /
    • 제31권5호
    • /
    • pp.515-518
    • /
    • 1998
  • Adhesive interaction of the platelet glycoprotien IIb-IIIa (GP IIb-IIIa) with a plasma protein, such as fibrinogen, plays an important role in thrombosis and hemostasis. The specific sequence Arg-Gly-Asp (RGD) is critical for the binding of fibrinogen to platelet. To examine and characterize the GP IIb-IIIa antagonist from natural sources, we have developed a simple enzyme-linked immunosorbant assay (ELISA) system. The GP IIb-IIIa complex was purified to homogeneity from platelet Iysates by the combination of two affinity chromatographic methods using the synthetic RGD peptide (GRGDSPK)-immobilized Sepharose and wheat germ lectin-Sepharose. The synthetic peptide GRGDSP inhibits GP IIb-IIIa binding to immobilized fibrinogen with an $IC_{50}$ of $1.5\;{\mu}M$. Venoms of three different snake species and a Korean scolopendra extract have strong antagonistic activities for the binding of human fibrinogen to the platelet GP IIb-IIIa complex. The $IC_{50}$ values of the snake venom s and scolopendra were in the range of $5.5\;{\mu}g$ to $60\;{\mu}g$. These results provide meaningful information for developing antiplatelet agents.

  • PDF