• Title/Summary/Keyword: G-Robot

Search Result 295, Processing Time 0.026 seconds

Design and Implementation of Real-time Digital Twin in Heterogeneous Robots using OPC UA (OPC UA를 활용한 이기종 로봇의 실시간 디지털 트윈 설계 및 구현)

  • Jeehyeong Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.189-196
    • /
    • 2023
  • As the manufacturing paradigm shifts, various collaborative robots are creating new markets. Demand for collaborative robots is increasing in all industries for the purpose of easy operation, productivity improvement, and replacement of manpower who do simple tasks compared to existing industrial robots. However, accidents frequently occur during work caused by collaborative robots in industrial sites, threatening the safety of workers. In order to construct an industrial site through robots in a human-centered environment, the safety of workers must be guaranteed, and there is a need to develop a collaborative robot guard system that provides reliable communication without the possibility of dispatch. It is necessary to double prevent accidents that occur within the working radius of cobots and reduce the risk of safety accidents through sensors and computer vision. We build a system based on OPC UA, an international protocol for communication with various industrial equipment, and propose a collaborative robot guard system through image analysis using ultrasonic sensors and CNN (Convolution Neural Network). The proposed system evaluates the possibility of robot control in an unsafe situation for a worker.

Development and Verification of the Automated Cow-Feeding System Driven by AGV (무인이송로봇기반 자동 소사료 공급 시스템 개발 및 검증)

  • Ahn, Sung-Su;Lee, Yong-Chan;Yoo, Ji-Hun;Lee, Yun-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.232-241
    • /
    • 2017
  • This paper presents an automated cow-feeding system based on an AGV and screw conveyor for domestic livestock farms, which are becoming larger and more commercialized. The system includes a hopper module for loading pellet-type mixed feed at the top of the system, a transfer module mounted with a screw conveyor to transfer feed from the hopper module to the outlet module, an outlet module composed of belt conveyors, and an electromagnetic guided driving-type AGV. The weight of the loaded feed is measured by a load cell located under the transfer module. The system reads the feed discharge information stored in RFID tags installed in each cowshed cell, and a predetermined amount of feed is discharged while the AGV is moving. A cow-feed test system was constructed to determine the design parameters of the screw conveyor in the transfer module that determine the feeding capacity. These parameters include the screw's outer diameter, the screw shaft outer diameter, and screw pitch. The parameters were applied to the finalized cow-feed system construction. A DSP-based main controller and cow-feeding algorithm for different scenarios were also developed to control the system. Experimental results confirmed that the system could supply a total of 21 kg of feed uniformly at 420 g/s for a cowshed cell which has 7 cows. The driving distance was 5 m and the speed was 0.1 m/s. Thus, the proposed system could be applied to standardized domestic livestock farms.

A Study on Elementary Students' Perceptions of Science, Engineering, and Technology and on the Images of Scientists, Engineers, and Technicians (초등학생의 과학, 공학, 기술에 대한 인식 및 과학자, 공학자, 기술자에 대한 이미지 조사)

  • Jung, Jinkyu;Kim, Youngmin
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.8
    • /
    • pp.719-730
    • /
    • 2014
  • The purpose of this study was to investigate elementary school students' perceptions about science, engineering and technology and their images of scientists, engineers, and technicians. In order to investigate students' images of scientists, engineers, technicians and student's perception of science, engineering, and technology, we used the tools "Draw a scientist at work, Draw an engineer at work, and Draw a technician at work". We have revised the tool DAST (Draw a scientist test), which was used in Fralick et al.'s study (2009). Subjects were 209 6th grade students sampled from an elementary school in G-city in Korea. According to the results of this study, the students' representative image of a scientist was similar to stereotypical scientist image in previous studies, but the students perceived science as a field of research with various professionals. The students' representative image of an engineer was a man with short hair, no beard or mustache, wearing ordinary clothes but no glasses. The engineer was designing or constructing a ship, a robot, a computer, and an airplane. The students' representative image of a technician was a man with short hair, wearing protective goggles and a mask for welding. The technician was fixing a car, a robot, a rocket, etc. and working with wrenches, hammers, screw drivers, welding machines, etc. Many students didn't perceive engineering and technology as fields of research. Also, many students didn't variously perceive engineering and technology as fields and ways of study.

Performance Improvement of Material Recognition Sensor Using Cubic Spline Interpolation (Spline보간식을 이용한 물체재질인식센서의 성능개선)

  • Park, J.G.;Lim, Y.C.;Cho, K.Y.;Kim, Y.G,;Chang, Y.H.
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.43-51
    • /
    • 1992
  • This paper describes a noble robot sensor designed to recognize an unknown material by measuring its thermal conductivity on various ambient temperature. The excellent agreement has been obtained between the measured sensor temperature and the calculated sensor temperature by cubic spline interpolation. The active sensor to measure the thermal conductivity of a gripped object was designed and the software program using C language to discriminate objects made of different materials was developed. The temperature response characteristics of different materials on the same ambient temperature was investigated. The temperatures on three comparing points varied linearly and had parallel relation with one another in accordance with various ambient temperature.

  • PDF

Development of Miniature Cone and Characteristics of Cone Tip Resistance in Centrifuge Model Tests (원심모형실험용 소형 콘 개발 및 콘 선단저항치 특성에 관한 연구)

  • Kim, Jae Hyun;Kim, Dong Joon;Kim, Dong Soo;Choo, Yun Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.631-642
    • /
    • 2013
  • The standard CPT(Cone Penetration Test), which can be easily performed to investigate in-situ soil engineering properties, has been widely used. CPT are also widely being utilized in centrifuge model tests. In this study, a miniature cone with 10mm diameter was developed and its applicability in the centrifuge was evaluated. The developed miniature cone was equipped with a four degree-of-freedom in-flight robot. A series of cone penetration tests was performed under four centrifuge acceleration levels. As results, the cone resistances measured at the same confining stress within shallow penetration depth were affected by the centrifugal accelerations. The critical depth was proportional to the cone diameter and relative density. Cone resistances results below the critical depth and soil parameters obtained from the laboratory tests were compared with those by previously proposed empirical relations.

Localization Technology Development of 16oz Popper Kettle through Existing Kettle Analysis and Heating System Study (기존 케틀 분석 및 가열 시스템 연구를 통한 16oz 팝퍼 케틀 국산화 기술 개발)

  • Lee, Jung-Hun;Kim, Kyoung-Chul;Oh, Young-Sub;Ryuh, Beom-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7773-7780
    • /
    • 2015
  • Analysis of existing kettle and its heating system has been the topic for localization technology development. Test pieces are made, polished and etched for existing kettle analysis. Surface of test pieces is observed using SEM, the kettle is verified to be made by deep drawing process from Ferrite-Perlite material. The kettle is also identified to be plated $16{\sim}49{\mu}m$ of thickness with Nickel(16%). Also heat transfer characteristics based on hot wire arrangement is investigated and optimal hot wire system is developed. Developed control system detects overheating and stops the whole system on the long operating time. Developed kettle takes the performance evaluation test for volume expansion and satisfied for standard 'KS G3602'.

Compensation of Installation Errors in a Laser Vision System and Dimensional Inspection of Automobile Chassis

  • Barkovski Igor Dunin;Samuel G.L.;Yang Seung-Han
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.437-446
    • /
    • 2006
  • Laser vision inspection systems are becoming popular for automated inspection of manufactured components. The performance of such systems can be enhanced by improving accuracy of the hardware and robustness of the software used in the system. This paper presents a new approach for enhancing the capability of a laser vision system by applying hardware compensation and using efficient analysis software. A 3D geometrical model is developed to study and compensate for possible distortions in installation of gantry robot on which the vision system is mounted. Appropriate compensation is applied to the inspection data obtained from the laser vision system based on the parameters in 3D model. The present laser vision system is used for dimensional inspection of car chassis sub frame and lower arm assembly module. An algorithm based on simplex search techniques is used for analyzing the compensated inspection data. The details of 3D model, parameters used for compensation and the measurement data obtained from the system are presented in this paper. The details of search algorithm used for analyzing the measurement data and the results obtained are also presented in the paper. It is observed from the results that, by applying compensation and using appropriate algorithms for analyzing, the error in evaluation of the inspection data can be significantly minimized, thus reducing the risk of rejecting good parts.

A Real-time Compact Structured-light based Range Sensing System

  • Hong, Byung-Joo;Park, Chan-Oh;Seo, Nam-Seok;Cho, Jun-Dong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.2
    • /
    • pp.193-202
    • /
    • 2012
  • In this paper, we propose a new approach for compact range sensor system for real-time robot applications. Instead of using off-the-shelf camera and projector, we devise a compact system with a CMOS image-sensor and a DMD (Digital Micro-mirror Device) that yields smaller dimension ($168{\times}50{\times}60mm$) and lighter weight (500g). We also realize one chip hard-wired processing of projection of structured-light and computing the range by exploiting correspondences between CMOS images-ensor and DMD. This application-specific chip processing is implemented on an FPGA in real-time. Our range acquisition system performs 30 times faster than the same implementation in software. We also devise an efficient methodology to identify a proper light intensity to enhance the quality of range sensor and minimize the decoding error. Our experimental results show that the total-error is reduced by 16% compared to the average case.

Kinematic Analysis of a 6-DOF Ultra-Precision Positioning Stage Based on Flexure Hinge (플렉셔 힌지 기반 6-자유도 초정밀 위치 결정 스테이지의 기구학 해석)

  • Shin, Hyun-Pyo;Moon, Jun-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.7
    • /
    • pp.579-586
    • /
    • 2016
  • This paper describes kinematic analysis of a 6-degrees-of-freedom (DOF) ultra-precision positioning stage based on a flexure hinge. The stage is designed for processes which require ultra-precision and high load capacities, e.g. wafer-level precision bonding/assembly. During the initial design process, inverse and forward kinematic analyses were performed to actuate the precision positioning stage and to calculate workspace. A two-step procedure was used for inverse kinematic analysis. The first step involved calculating the amount of actuation of the horizontal actuation units. The second step involved calculating the amount of actuation of the vertical actuation unit, given the the results of the first step, by including a lever hinge mechanism adopted for motion amplification. Forward kinematic analysis was performed by defining six distance relationships between hinge positions for in-plane and out-of-plane motion. Finally, the result of a circular path actuation test with respect to the x-y, y-z, and x-z planes is presented.

Development of Multi-Axis Force/Moment Sensor for Stroke Patient's Hand Fixing System Control (뇌졸중 환자의 손 고정장치 제어를 위한 다축 힘/모멘트센서 개발)

  • Kim, H.M.;Kim, J.W.;Kim, G.S.
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.351-356
    • /
    • 2011
  • Stroke patients should exercise for the rehabilitation of their fingers, because they can't use their hand and fingers. Their hand and fingers are fixed on the hand fixing system for rehabilitation exercise of them. But the hands clenched the fist of stroke patients are difficult to fix on it. In order to fix the hands and fingers, their palms are pressed with pressing bars and are controlled by reference force. The fixing system must have a five-axis force/moment sensor to force control. In this paper, the five-axis force/moment sensor was developed for the hand fixing system of finger-rehabilitation exercising system. The structure of the five-axis force/moment sensor was modeled, and designed using finite element method(FEM). And it was fabricated with strain-gages, then, its characteristic test was carried out. As a result, the maximum interference error is less than 2.43 %.