• 제목/요약/키워드: G code

검색결과 856건 처리시간 0.026초

시중에서 유통되는 가쓰오부시의 미생물학적·화학적 위해요소분석 및 안전성 평가 (Risk Analysis and Safety Assessment of Microbiological and Chemical Hazards in Katsuobushi Products Distributed in the Market)

  • 송민규;김소희;김진수;이정석;허민수;박신영
    • 한국수산과학회지
    • /
    • 제55권4호
    • /
    • pp.431-436
    • /
    • 2022
  • For the safety assessment of microbiological and chemical hazards in katsuobushi, fifteen samples of katsuobushi were purchased from supermarkets. The contamination levels of total viable bacteria, coliforms, Escherichia coli, and nine pathogenic bacteria [Staphylococcus aureus, Salmonella spp., Listeria monocytogenes, Bacillus cereus, Vibrio parahaemolyticus, Clostridium perfringens, Enterohemorrhagic E. coli (EHEC), Yersinia enterocolitica and Campylobacter jejuni/coli] were quantitatively or qualitatively assessed. Additionally, the heavy metals (total and methyl mercury) content, radioactivity (131 I, 134 Cs+ and 137 Cs) were quantitatively assessed. Microbial and chemical analyses were performed using standard methods in Korean food code. The contamination level of total viable bacteria was 2.70 (1.18-4.42) log CFU/g. Coliforms, E. coli and S. aureus were not detected in any samples. Other eight pathogenic bacteria were negative in all samples. The contamination levels of total and methyl mercury were 0.366 (0.227-0.481) and 0.120 (0.002-0.241) mg/kg, respectively. In addition, radioactivity was not detected in any samples. The results will be helpful in revitalizing domestic use and boosting exports of katsuobushi because the microbiological and chemical safety of katsuobushi has been assured. Furthermore, the results may be used as a basis for performing chemical and microbial risk assessments of katsuobushi.

Malware Detection Using Deep Recurrent Neural Networks with no Random Initialization

  • Amir Namavar Jahromi;Sattar Hashemi
    • International Journal of Computer Science & Network Security
    • /
    • 제23권8호
    • /
    • pp.177-189
    • /
    • 2023
  • Malware detection is an increasingly important operational focus in cyber security, particularly given the fast pace of such threats (e.g., new malware variants introduced every day). There has been great interest in exploring the use of machine learning techniques in automating and enhancing the effectiveness of malware detection and analysis. In this paper, we present a deep recurrent neural network solution as a stacked Long Short-Term Memory (LSTM) with a pre-training as a regularization method to avoid random network initialization. In our proposal, we use global and short dependencies of the inputs. With pre-training, we avoid random initialization and are able to improve the accuracy and robustness of malware threat hunting. The proposed method speeds up the convergence (in comparison to stacked LSTM) by reducing the length of malware OpCode or bytecode sequences. Hence, the complexity of our final method is reduced. This leads to better accuracy, higher Mattews Correlation Coefficients (MCC), and Area Under the Curve (AUC) in comparison to a standard LSTM with similar detection time. Our proposed method can be applied in real-time malware threat hunting, particularly for safety critical systems such as eHealth or Internet of Military of Things where poor convergence of the model could lead to catastrophic consequences. We evaluate the effectiveness of our proposed method on Windows, Ransomware, Internet of Things (IoT), and Android malware datasets using both static and dynamic analysis. For the IoT malware detection, we also present a comparative summary of the performance on an IoT-specific dataset of our proposed method and the standard stacked LSTM method. More specifically, of our proposed method achieves an accuracy of 99.1% in detecting IoT malware samples, with AUC of 0.985, and MCC of 0.95; thus, outperforming standard LSTM based methods in these key metrics.

Evaluation of EC8 and TBEC design response spectra applied at a region in Turkey

  • Yusuf Guzel;Fidan Guzel
    • Earthquakes and Structures
    • /
    • 제25권3호
    • /
    • pp.199-208
    • /
    • 2023
  • Seismic performance analysis is one of the fundamental steps in the design of new or retrofitting buildings. In the seismic performance analysis, the adapted spectral acceleration curve for a given site mainly governs the seismic behavior of buildings. Since every soil site (class) has a different impact on the spectral accelerations of input motions, different spectral acceleration curves have to be involved for every soil class that the building is located on top of. Modern seismic design codes (e.g., Eurocode 8, EC8, or Turkish Building Earthquake Code, TBEC) provide design response spectra for all the soil classes to be used in the building design or retrofitting. This research aims to evaluate the EC8 and TBEC based design response spectra using the spectra of real earthquake input motions that occurred (and were recorded at only soil classes A, B and C, no recording is available at soil class D) in a specific area in Turkey. It also conducts response spectrum analyses of 5, 10 and 13 floor reinforced concrete building models under EC8, TBEC and actual spectral response curves. The results indicate that the EC8 and especially TBEC given design response spectra cannot be able to represent the mean actual spectral acceleration curves at soil classes A, B and C. This is particularly observed at periods higher than 0.3 s, 0.42 s and 0.55 s for the TBEC design response spectra, 0.54 s, 0.65 s and 0.84 s for the EC8 design response spectra at soil classes A, B and C, respectively. This is also reflected to the shear forces of three building models, as actual spectral acceleration curves lead to the highest shear forces, followed by the shear forces obtained from EC8 and, then, the TBEC design response spectra.

A closer look at the structure and gamma-ray shielding properties of newly designed boro -tellurite glasses reinforced by bismuth (III) oxide

  • Hammam Abdurabu Thabit;Abd Khamim Ismail;N.N. Yusof;M.I. Sayyed;K.G. Mahmoud;I. Abdullahi;S. Hashim
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1734-1741
    • /
    • 2023
  • This work presents the synthesis and preparation of a new glass system described by the equation of (70-x) B2O3-5TeO2 -20SrCO3-5ZnO -xBi2O3, x = 0, 1, 5, 10, and 15 mol. %, using the melt quenching technique at a melting temperature of 1100 ℃. The photon-shielding characteristics mainly the linear attenuation coefficient (LAC) of the prepared glass samples were evaluated using Monte Carlo (MC) simulation N-particle transport code (MCNP-5) at gamma-ray energy extended from 59 keV to 1408 keV emitted by the radioisotopes Am-241, Ba-133, Cs-137, Co-60, Na-22, and Eu-152. Furthermore, we observed that the Bi2O3 content of the glasses had a significantly stronger impact on the LAC at 59 and 356 keV. The study of the lead equivalent thickness shows that the performance of fabricated glass sample with 15 mol.% of Bi2O3 is four times less than the performance of pure lead at low gamma photon energy while it is enhanced and became two times lower the perforce of pure lead at high energy. Therefore, the fabricated glasses special sample with 15 mol.% of Bi2O3 has good shielding properties in low, intermediate, and high energy intervals.

A network pharmacology and molecular docking approach in the exploratory investigation of the biological mechanisms of lagundi (Vitex negundo L.) compounds against COVID-19

  • Robertson G. Rivera;Patrick Junard S. Regidor;Edwin C. Ruamero Jr;Eric John V. Allanigue;Melanie V. Salinas
    • Genomics & Informatics
    • /
    • 제21권1호
    • /
    • pp.4.1-4.18
    • /
    • 2023
  • Coronavirus disease 2019 (COVID-19) is an inflammatory and infectious disease caused by severe acute respiratory syndrome coronavirus 2 virus with a complex pathophysiology. While COVID-19 vaccines and boosters are available, treatment of the disease is primarily supportive and symptomatic. Several research have suggested the potential of herbal medicines as an adjunctive treatment for the disease. A popular herbal medicine approved in the Philippines for the treatment of acute respiratory disease is Vitex negundo L. In fact, the Department of Science and Technology of the Philippines has funded a clinical trial to establish its potential as an adjunctive treatment for COVID-19. Here, we utilized network pharmacology and molecular docking in determining pivotal targets of Vitex negundo compounds against COVID-19. The results showed that significant targets of Vitex negundo compounds in COVID-19 are CSB, SERPINE1, and PLG which code for cathepsin B, plasminogen activator inhibitor-1, and plasminogen, respectively. Molecular docking revealed that α-terpinyl acetate and geranyl acetate have good binding affinity in cathepsin B; 6,7,4-trimethoxyflavanone, 5,6,7,8,3',4',5'-heptamethoxyflavone, artemetin, demethylnobiletin, gardenin A, geranyl acetate in plasminogen; and 7,8,4-trimethoxyflavanone in plasminogen activator inhibitor-1. While the results are promising, these are bound to the limitations of computational methods and further experimentation are needed to completely establish the molecular mechanisms of Vitex negundo against COVID-19.

3D Printing in Modular Construction: Opportunities and Challenges

  • Li, Mingkai;Li, Dezhi;Zhang, Jiansong;Cheng, Jack C.P.;Gan, Vincent J.L.
    • 국제학술발표논문집
    • /
    • The 8th International Conference on Construction Engineering and Project Management
    • /
    • pp.75-84
    • /
    • 2020
  • Modular construction is a construction method whereby prefabricated volumetric units are produced in a factory and are installed on site to form a building block. The construction productivity can be substantially improved by the manufacturing and assembly of standardized modular units. 3D printing is a computer-controlled fabrication method first adopted in the manufacturing industry and was utilized for the automated construction of small-scale houses in recent years. Implementing 3D printing in the fabrication of modular units brings huge benefits to modular construction, including increased customization, lower material waste, and reduced labor work. Such implementation also benefits the large-scale and wider adoption of 3D printing in engineering practice. However, a critical issue for 3D printed modules is the loading capacity, particularly in response to horizontal forces like wind load, which requires a deeper understanding of the building structure behavior and the design of load-bearing modules. Therefore, this paper presents the state-of-the-art literature concerning recent achievement in 3D printing for buildings, followed by discussion on the opportunities and challenges for examining 3D printing in modular construction. Promising 3D printing techniques are critically reviewed and discussed with regard to their advantages and limitations in construction. The appropriate structural form needs to be determined at the design stage, taking into consideration the overall building structural behavior, site environmental conditions (e.g., wind), and load-carrying capacity of the 3D printed modules. Detailed finite element modelling of the entire modular buildings needs to be conducted to verify the structural performance, considering the code-stipulated lateral drift, strength criteria, and other design requirements. Moreover, integration of building information modelling (BIM) method is beneficial for generating the material and geometric details of the 3D printed modules, which can then be utilized for the fabrication.

  • PDF

사이버로핑이 조직의 정보보호 리스크에 미치는 영향 (Effects of Cyberloafing on Cybersecurity Risks of Organizations: The Case of a Financial Institute)

  • 오현우;김범수;박재영
    • 정보보호학회논문지
    • /
    • 제33권5호
    • /
    • pp.813-826
    • /
    • 2023
  • 조직 구성원들은 업무 시간에 사적인 목적으로 인터넷을 종종 사용하는데, 이것을 사이버로핑(cyberloafing)이라고 한다. 특정 사이버로핑(예를 들어, 웹하드, 성인 및 도박 사이트 접속)은 악성코드 감염으로 이어질 수 있기 때문에 조직의 정보보호 리스크를 증가시킬 수 있는데, 이것은 궁극적으로 조직에 상당한 피해를 줄 수 있다. 따라서, 정보보호 측면에서, 사이버로핑의 영향을 살펴보는 것은 조직 입장에서 매우 중요하다. 국내 금융기관 직원 680명의 인터넷 필터링 시스템 로그정보 118,942건을 분석한 결과, 조직 구성원이 블랙리스트 사이트에 접속할수록 악성코드 감염 가능성이 높아지는 것으로 나타났다. 즉, 조직 구성원의 사이버로핑은 조직의 정보보호 리스크를 증가시킨다. 따라서, 조직은 조직 구성원의 인터넷 사용을 적절한 방식으로 모니터링하고 통제할 필요가 있다.

꽁치(Cololabis saira)의 물성연화를 통한 고령친화형 수산식품의 개발 및 품질특성 평가 (Development and Quality Characteristics Evaluation of Senior-friendly Seafood Products Using Softening Processes of the Pacific Saury Cololabis saira)

  • 박선영;장미순;오재영;이석민;박시형;최유리;김진수;강상인
    • 한국수산과학회지
    • /
    • 제56권6호
    • /
    • pp.773-780
    • /
    • 2023
  • This study was conducted to prepare curry potato pancakes (CPP), curry fish balls (CFB) and steamed eggs (SE) using Pacific saury Cololabis saira as senior-friendly seafood and to determine the physical property stages and quality characteristics of the prepared food. Escherichia coli concentrations were undetected in all the products, which is considered an acceptable limit for senior-friendly foods. On applying the physical properties standards according to the Korean Industrial Standard, saury CPP, saury CFB, and saury SE were classified as the 1st, 2nd, and the 3rd stages as senior-friendly seafood, respectively. Regarding the nutritional properties per 100 g of the three types of senior-friendly seafood using saury according to the Korean food code, CPP had three types of nutrients (protein, riboflavin, and niacin), whereas CFB and SE had four (protein, riboflavin, niacin and calcium) and six (protein, vitamin D, vitamin C, riboflavin, niacin, and calcium) types of nutrients, respectively.

Optical, thermal and gamma ray attenuation characteristics of tungsten oxide modified: B2O3-SrCO3-TeO2-ZnO glass series

  • Hammam Abdurabu Thabit;Abd Khamim Ismail;M.I. Sayyed;S. Hashim;I. Abdullahi;Mohamed Elsafi;K. Keshavamurthy;G. Jagannath
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.247-256
    • /
    • 2024
  • The glass series modified by tungsten oxide was created using the compounds (75-x) B2O3- 10SrCO3- 8TeO2- 7ZnO - xWO3, where x = 0, 1, 5, 10, 22, 27, 34, and 40% mole percentage. A UV-visible spectrophotometer and thermogravimetric-differential thermal analysis (TG-DTA) methods were employed to characterize the specimen's optical and phase transition attributes, respectively. The mass-attenuation coefficient (AC) of all created glasses from BSTZW0 to BSTZ7 was estimated using Geant4 code from 0.05 to 3 MeV and compared to the XCOM software results, with a relative difference of less than 2% between the two results. The increase of WO3 percentage lead to an increase in the Linear-AC at each studied energy, and this is mainly due to the fact that the higher the percentage of WO3 in the glass increases its density which causes an increase in the Linear-AC, so an energy of 0.06 MeV, as an example, the values of the Linear-AC was 4.009, 4.509, 5.442, 6812, 8.564, 9.856, 10.999 and 11.628 cm-1 form BSTZW0 too BSTZW7, respectively. The Half-VL (value layer), Mean-FP (free path), Tenth-VL, and Radiation attenuation performance (RAP) were also calculated for the current BSTZW-glass samples and revealed that BSTZW7 had the best gamma ray attenuation performance at all discussed energies when compared to other studied glass samples.

슬래브-기둥 접합부의 펀칭강도 및 횡변위 성능에 관한 반복 횡하중 실험 (Cyclic Lateral Load Test on the Punching Shear Strength and the Lateral Displacement Capacity of Slab-Column Connections)

  • 최정욱;송진규;김준희
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제11권4호
    • /
    • pp.99-108
    • /
    • 2007
  • 풍하중 및 지진하중등 횡하중이 작용하는 무량판 슬래브는 전단파괴와 같은 취성파괴를 지연시키기 위해서 충분한 전단강도와 연성능력을 보유하여야 한다. 본 연구에서는 반복 횡하중을 받는 무량판 슬래브의 전단강도와 변형성능을 고찰하기 위하여, 무보강 및 전단 보강된 총 4개의 내부기둥-슬래브 접합부를 실험하였다. 실험결과, 전단보강 슬래브의 이방향 전단강도는 무보강 슬래브보다 최대 1.5배까지 증가시켜 적용하는 콘크리트구조설계기준(KCI)과 ACI 318-02 기준은 중력하중만이 작용하는 경우에는 적절하나 조합하중 특히 횡하중의 영향이 클 경우에는 매우 불안전측 이었다. 한편, 변형성능 측면에서 슬래브-기둥 접합부의 1.5% 횡변위 성능을 확보하기 위하여 이방향 전단강도에 대한 중력하중비를 40%이하로 제한한 ACI-ASCE 352 위원회의 권고는 안전측인 것으로 나타났다.