• 제목/요약/키워드: G code

검색결과 856건 처리시간 0.031초

COARSE MESH FINITE DIFFERENCE ACCELERATION OF DISCRETE ORDINATE NEUTRON TRANSPORT CALCULATION EMPLOYING DISCONTINUOUS FINITE ELEMENT METHOD

  • Lee, Dong Wook;Joo, Han Gyu
    • Nuclear Engineering and Technology
    • /
    • 제46권6호
    • /
    • pp.783-796
    • /
    • 2014
  • The coarse mesh finite difference (CMFD) method is applied to the discontinuous finite element method based discrete ordinate calculation for source convergence acceleration. The three-dimensional (3-D) DFEM-Sn code FEDONA is developed for general geometry applications as a framework for the CMFD implementation. Detailed methods for applying the CMFD acceleration are established, such as the method to acquire the coarse mesh flux and current by combining unstructured tetrahedron elements to rectangular coarse mesh geometry, and the alternating calculation method to exchange the updated flux information between the CMFD and DFEM-Sn. The partial current based CMFD (p-CMFD) is also implemented for comparison of the acceleration performance. The modified p-CMFD method is proposed to correct the weakness of the original p-CMFD formulation. The performance of CMFD acceleration is examined first for simple two-dimensional multigroup problems to investigate the effect of the problem and coarse mesh sizes. It is shown that smaller coarse meshes are more effective in the CMFD acceleration and the modified p-CMFD has similar effectiveness as the standard CMFD. The effectiveness of CMFD acceleration is then assessed for three-dimensional benchmark problems such as the IAEA (International Atomic Energy Agency) and C5G7MOX problems. It is demonstrated that a sufficiently converged solution is obtained within 7 outer iterations which would require 175 iterations with the normal DFEM-Sn calculations for the IAEA problem. It is claimed that the CMFD accelerated DFEM-Sn method can be effectively used in the practical eigenvalue calculations involving general geometries.

PHC 매입말뚝의 하중저항 설계정수 제안 (Suggestion of Load and Resistance Factored Design Value for PHC Bored Pile)

  • 박종배;박용부;이범식;김상연
    • 토지주택연구
    • /
    • 제3권3호
    • /
    • pp.279-286
    • /
    • 2012
  • 뢰성에 기반한 한계상태설계법은 국제표준화기구인 ISO뿐만 아니라 국내의 각종 건설관련 기준에서도 적용되는 등 국내외적으로 기존 허용응력설계법을 대체하고 있는 실정이다. 본 논문에서는 국내에서 건축물의 기초로 많이 사용되고 있는 PHC 매입말뚝을 대상으로 한계상태설계법의 일종인 LRFD 설계정수를 제안하였다. PHC 매입말뚝의 LRFD 설계정수를 제안하기 위해 81개의 현장 동재하 시험자료와 이들 말뚝에 대한 지지력 설계(Meyerhof 설계법, SPT-CPT 전환 설계법) 자료를 분석하고 목표 신뢰도 지수 2.33과 3.0에 대해 하중저항계수를 제시하였다. PHC 매입말뚝의 저항계수는 목표 신뢰도 지수에 따라 Meyerhof 방법, SPT-CPT 전환법은 각각 0.36~0.44, 0.24~0.31을 나타내었다.

A COMPARISON STUDY OF SPACE RADIATION DOSE ANALYSIS PROGRAMS: SPENVIS SECTORING TOOL AND SIGMA II

  • Chae Jongwon
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2004년도 한국우주과학회보 제13권2호
    • /
    • pp.347-350
    • /
    • 2004
  • A space radiation analysis has been used to evaluate an ability of electronic equipment boxes or spacecrafts to endure various radiation effects, so it helps design thicknesses of structure and allocate components to meet the radiation requirements. A comparison study of space radiation dose analysis programs SPENVIS Sectoring Tool (SST) and SIGMA II is conducted through some structure cases, simple sphere shell, box and representative satellite configurations. The results and a discussion of comparison will be given. A general comparison will be shown for understanding those programs. The both programs use the same strategy, solid angle sectoring with ray-tracing method to produce an approximate dose at points in representative simple and complex models of spacecraft structures. Also the particle environment data corresponding to mission specification and radiation transport data are used as input data. But there are distinctions between them. The specification of geometry model and its input scheme, the assignment of dose point and the numbers, the prerequisite programs and ways of representing results will be discussed. SST is a web-based interactive program for sectoring analysis of complex geometries. It may be useful for a preliminary dose assessment with user-friendly interfaces and a package approach. SIGMA II is able to obtain from RSICC (Radiation Safety Information Computational Center) as a FOR-TRAN 77 source code. It may be suitable for either parametric preliminary design or detailed final design, e.g. a manned flight or radiation-sensitive component configuration design. It needs some debugs, recompiling and a tedious work to make geometrical quadric surfaces for actual spacecraft configuration, and has poor documentation. It is recommend to vist RSICC homepage and GEANT4/SSAT homepage.

  • PDF

국내 지진재해도를 고려한 저층 필로티 건물의 붕괴 확률 (Collapse Probability of a Low-rise Piloti-type Building Considering Domestic Seismic Hazard)

  • 김대환;김태완;추유림
    • 한국지진공학회논문집
    • /
    • 제20권7_spc호
    • /
    • pp.485-494
    • /
    • 2016
  • The risk-based assessment, also called time-based assessment of structure is usually performed to provide seismic risk evaluation of a target structure for its entire life-cycle, e.g. 50 years. The prediction of collapse probability is the estimator in the risk-based assessment. While the risk-based assessment is the key in the performance-based earthquake engineering, its application is very limited because this evaluation method is very expensive in terms of simulation and computational efforts. So the evaluation database for many archetype structures usually serve as representative of the specific system. However, there is no such an assessment performed for building stocks in Korea. Consequently, the performance objective of current building code, KBC is not clear at least in a quantitative way. This shortcoming gives an unresolved issue to insurance industry, socio-economic impact, seismic safety policy in national and local governments. In this study, we evaluate the comprehensive seismic performance of an low-rise residential buildings with discontinuous structural walls, so called piloti-type structure which is commonly found in low-rise domestic building stocks. The collapse probability is obtained using the risk integral of a conditioned collapse capacity function and regression of current hazard curve. Based on this approach it is expected to provide a robust tool to seismic safety policy as well as seismic risk analysis such as Probable Maximum Loss (PML) commonly used in the insurance industry.

Evaluation of seismic response of soft-storey infilled frames

  • Santhi, M. Helen;Knight, G.M. Samuel;Muthumani, K.
    • Computers and Concrete
    • /
    • 제2권6호
    • /
    • pp.423-437
    • /
    • 2005
  • In this study two single-bay, three-storey space frames, one with brick masonry infill in the second and third floors representing a soft-storey frame and the other without infill were designed and their 1:3 scale models were constructed according to non-seismic detailing and the similitude law. The models were excited with an intensity of earthquake motion as specified in the form of response spectrum in Indian seismic code IS 1893-2002 using a shake table. The seismic responses of the soft-storey frame such as fundamental frequency, mode shape, base shear and stiffness were compared with that of the bare frame. It was observed that the presence of open ground floor in the soft-storey infilled frame reduced the natural frequency by 30%. The shear demand in the soft-storey frame was found to be more than two and a half times greater than that in the bare frame. From the mode shape it was found that, the bare frame vibrated in the flexure mode whereas the soft-storey frame vibrated in the shear mode. The frames were tested to failure and the damaged soft-storey frame was retrofitted with concrete jacketing and, subjected to same earthquake motions as the original frames. Pushover analysis was carried out using the software package SAP 2000 to validate the test results. The performance point was obtained for all the frames under study, therefore the frames were found to be adequate for gravity loads and moderate earthquakes. It was concluded that the global nonlinear seismic response of reinforced concrete frames with masonry infill can be adequately simulated using static nonlinear pushover analysis.

Explosive loading of multi storey RC buildings: Dynamic response and progressive collapse

  • Weerheijm, J.;Mediavilla, J.;van Doormaal, J.C.A.M.
    • Structural Engineering and Mechanics
    • /
    • 제32권2호
    • /
    • pp.193-212
    • /
    • 2009
  • The resilience of a city confronted with a terrorist bomb attack is the background of the paper. The resilience strongly depends on vital infrastructure and the physical protection of people. The protection buildings provide in case of an external explosion is one of the important elements in safety assessment. Besides the aspect of protection, buildings facilitate and enable many functions, e.g., offices, data storage, -handling and -transfer, energy supply, banks, shopping malls etc. When a building is damaged, the loss of functions is directly related to the location, amount of damage and the damage level. At TNO Defence, Security and Safety methods are developed to quantify the resilience of city infrastructure systems (Weerheijm et al. 2007b). In this framework, the dynamic response, damage levels and residual bearing capacity of multi-storey RC buildings is studied. The current paper addresses the aspects of dynamic response and progressive collapse, as well as the proposed method to relate the structural damage to a volume-damage parameter, which can be linked to the loss of functionality. After a general introduction to the research programme and progressive collapse, the study of the dynamic response and damage due to blast loading for a single RC element is described. Shock tube experiments on plates are used as a reference to study the possibilities of engineering methods and an explicit finite element code to quantify the response and residual bearing capacity. Next the dynamic response and progressive collapse of a multi storey RC building is studied numerically, using a number of models. Conclusions are drawn on the ability to predict initial blast damage and progressive collapse. Finally the link between the structural damage of a building and its loss of functionality is described, which is essential input for the envisaged method to quantify the resilience of city infrastructure.

Impact of rock microstructures on failure processes - Numerical study based on DIP technique

  • Yu, Qinglei;Zhu, Wancheng;Tang, Chun'an;Yang, Tianhong
    • Geomechanics and Engineering
    • /
    • 제7권4호
    • /
    • pp.375-401
    • /
    • 2014
  • It is generally accepted that material heterogeneity has a great influence on the deformation, strength, damage and failure modes of rock. This paper presents numerical simulation on rock failure process based on the characterization of rock heterogeneity by using a digital image processing (DIP) technique. The actual heterogeneity of rock at mesoscopic scale (characterized as minerals) is retrieved by using a vectorization transformation method based on the digital image of rock surface, and it is imported into a well-established numerical code Rock Failure Process Analysis (RFPA), in order to examine the effect of rock heterogeneity on the rock failure process. In this regard, the numerical model of rock could be built based on the actual characterization of the heterogeneity of rock at the meso-scale. Then, the images of granite are taken as an example to illustrate the implementation of DIP technique in simulating the rock failure process. Three numerical examples are presented to demonstrate the impact of actual rock heterogeneity due to spatial distribution of constituent mineral grains (e.g., feldspar, quartz and mica) on the macro-scale mechanical response, and the associated rock failure mechanism at the meso-scale level is clarified. The numerical results indicate that the shape and distribution of constituent mineral grains have a pronounced impact on stress distribution and concentration, which may further control the failure process of granite. The proposed method provides an efficient tool for studying the mechanical behaviors of heterogeneous rock and rock-like materials whose failure processes are strongly influenced by material heterogeneity.

액적충돌침식 영향 배관의 설계변경에 관한 연구 (Study on Design Change of a Pipe Affected by Liquid Droplet Impingement Erosion)

  • 황경모;이찬규;방극진;임영식
    • 대한기계학회논문집B
    • /
    • 제35권10호
    • /
    • pp.1097-1103
    • /
    • 2011
  • 액적충돌침식은 증기나 공기에 포함된 액적이 금속 소재에 고속으로 충돌할 때 모재가 손상되는 현상이다. 액적충돌침식 손상은 증기터빈이나 빗방울과 부딪치는 항공기에서 주로 발생되어 왔으나 최근에는 원전 배관에서도 발생하고 있다. 원전 배관 중에서도 특히 높은 압력강하가 발생하고 2상 증기가 흐르는 배관에서 주로 발생한다. 실제 2011년 초반 국내 한 원전에서는 2상 증기가 흐르는 배관에서 액적충돌침식 손상으로 인한 누설이 발생한 바 있다. 본 논문에서는 액적충돌침식 손상이 발생한 배관에 대하여 손상을 억제할 수 있는 설계변경 방안에 관한 연구를 수행하였다. 설계변경은 유체 유동측면에서 분석하였으며, 상용 수치해석 코드인 FLUENT를 이용하였다.

선수 구조부 구조해석 시스템 개발(2) - 파랑충격하중 면적의 추정 - (Development of Structural Analysis System of Bow Flare Structure(2) - Prediction of Wave Impact Load Area -)

  • 이상갑;박종우
    • 대한조선학회논문집
    • /
    • 제36권4호
    • /
    • pp.87-94
    • /
    • 1999
  • 선수 구조부의 파랑충격현상은 대단히 복잡한 현상을 나타내고 있고 정확하게 규명하기 어렵기 때문에 아직 경험적인 설계에 의존하고 있다. 파랑충격하중에 의한 선수 구조부의 손상은 주로 충격압력역적과 파랑충격하중의 면적에 의하여 크게 영향을 받는다. 본 연구에서는 두 번째 단계로서 파랑충격하중에 대한 선수 구조부 강도의 추정을 위하여 효율적인 부재치수의 결정 프로그램을 개발하고, 파랑충격하중의 면적을 추정하고자 한다. 동적 비선형 범용 프로그램 LS/DYNA3D를 이용하여 DWT 300,000급 VLCC의 선수 구조부를 이상화된 패널구조 모델의 중앙부에서의 최대 손상변형을 비교하여 추정하고자 한다. 이것은 다음 단계의 선수 구조부의 동적 구조해석의 검증에 사용될 것이다. 본 연구에서는 극치 6.5MPa, 후부높이 1.0MPa, 그리고 지속시간 5.0msec인 파랑충격압력 곡선 하에서, 강성이 작은 보강재로 보강된 경우 파랑충격하중의 면적은 $1.5s{\times}1.5s$ 보강재 간격(s), 강성이 큰 스트링거로 보강된 경우는 $2.5s{\times}2.5s$로 추정하였다.

  • PDF

선수 구조부 구조해석 시스템 개발(1) - 파랑충격하중 특성의 추정 - (Development of Structural Analysis System of Bow Flare Structure(1) - Prediction of Wave Impact Load Characteristics -)

  • 이상갑;김만수
    • 대한조선학회논문집
    • /
    • 제36권4호
    • /
    • pp.77-86
    • /
    • 1999
  • 대체로 황천 운행 시 선체와 파도의 상대적인 운동에 의하여 발생하는 파랑충격하중을 고려하여 선수 구조부를 설계하고 있다. 선수 구조부의 파랑충격현상은 대단히 복잡한 현상을 나타내고 있고 정확하게 규명하기 어렵기 때문에 경험적인 설계에 의존하고 있다. 본 연구에서는 첫 단계로서 동적 비선형 범용 프로그램 LS/DYNA3D를 이용하여 선수 구조부의 손상 자료로부터 역으로 파랑충격하중을 추정하고, 파랑충격압력 곡선의 극치, 지속시간, 후부높이, 극치발생시간 등과 같은 특징에 대한 파라메트 연구를 수행하고자 한다. 본 연구를 통하여 파랑충격하중에 대한 구조물의 동적 거동은 주로 충격압력역적에 의하여 영향을 받고, 또한 구조물에 최대 변형이 발생하기 이전에 가하여진 충격압력역적이 거동에 매우 큰 영향을 미친다는 것을 알 수 있었다.

  • PDF