• Title/Summary/Keyword: Fuzzy-spatial Relationship

Search Result 10, Processing Time 0.019 seconds

A Novel Image Segmentation Method Based on Improved Intuitionistic Fuzzy C-Means Clustering Algorithm

  • Kong, Jun;Hou, Jian;Jiang, Min;Sun, Jinhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3121-3143
    • /
    • 2019
  • Segmentation plays an important role in the field of image processing and computer vision. Intuitionistic fuzzy C-means (IFCM) clustering algorithm emerged as an effective technique for image segmentation in recent years. However, standard fuzzy C-means (FCM) and IFCM algorithms are sensitive to noise and initial cluster centers, and they ignore the spatial relationship of pixels. In view of these shortcomings, an improved algorithm based on IFCM is proposed in this paper. Firstly, we propose a modified non-membership function to generate intuitionistic fuzzy set and a method of determining initial clustering centers based on grayscale features, they highlight the effect of uncertainty in intuitionistic fuzzy set and improve the robustness to noise. Secondly, an improved nonlinear kernel function is proposed to map data into kernel space to measure the distance between data and the cluster centers more accurately. Thirdly, the local spatial-gray information measure is introduced, which considers membership degree, gray features and spatial position information at the same time. Finally, we propose a new measure of intuitionistic fuzzy entropy, it takes into account fuzziness and intuition of intuitionistic fuzzy set. The experimental results show that compared with other IFCM based algorithms, the proposed algorithm has better segmentation and clustering performance.

An Extended Concept-based Image Retrieval System : E-COIRS (확장된 개념 기반 이미지 검색 시스템)

  • Kim, Yong-Il;Yang, Jae-Dong;Yang, Hyoung-Jeong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.3
    • /
    • pp.303-317
    • /
    • 2002
  • In this paper, we design and implement E-COIRS enabling users to query with concepts and image features used for further refining the concepts. For example, E-COIRS supports the query "retrieve images containing black home appliance to north of reception set. "The query includes two types of concepts: IS-A and composite. "home appliance"is an IS-A concept, and "reception set" is a composite concept. For evaluating such a query. E-COIRS includes three important components: a visual image indexer, thesauri and a query processor. Each pair of objects in an mage captured by the visual image indexer is converted into a triple. The triple consists of the two object identifiers (oids) and their spatial relationship. All the features of an object is referenced by its old. A composite concept is detected by the triple thesaurus and IS-A concept is recolonized by the fuzzy term thesaurus. The query processor obtains an image set by matching each triple in a user with an inverted file and CS-Tree. To support efficient storage use and fast retrieval on high-dimensional feature vectors, E-COIRS uses Cell-based Signature tree(CS-Tree). E-COIRS is a more advanced content-based image retrieval system than other systems which support only concepts or image features.

Landslide susceptibility mapping using Logistic Regression and Fuzzy Set model at the Boeun Area, Korea (로지스틱 회귀분석과 퍼지 기법을 이용한 산사태 취약성 지도작성: 보은군을 대상으로)

  • Al-Mamun, Al-Mamun;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.2
    • /
    • pp.109-125
    • /
    • 2016
  • This study aims to identify the landslide susceptible zones of Boeun area and provide reliable landslide susceptibility maps by applying different modeling methods. Aerial photographs and field survey on the Boeun area identified landslide inventory map that consists of 388 landslide locations. A total ofseven landslide causative factors (elevation, slope angle, slope aspect, geology, soil, forest and land-use) were extracted from the database and then converted into raster. Landslide causative factors were provided to investigate about the spatial relationship between each factor and landslide occurrence by using fuzzy set and logistic regression model. Fuzzy membership value and logistic regression coefficient were employed to determine each factor's rating for landslide susceptibility mapping. Then, the landslide susceptibility maps were compared and validated by cross validation technique. In the cross validation process, 50% of observed landslides were selected randomly by Excel and two success rate curves (SRC) were generated for each landslide susceptibility map. The result demonstrates the 84.34% and 83.29% accuracy ratio for logistic regression model and fuzzy set model respectively. It means that both models were very reliable and reasonable methods for landslide susceptibility analysis.

Relationship Between Image Quality and Changes in Spation Resolution for the Gamma Camera (감마카메라의 공간분해능 변화와 화질과의 관계)

  • Lee, Man-Koo;Park, Soung-Ock
    • Journal of radiological science and technology
    • /
    • v.25 no.1
    • /
    • pp.77-81
    • /
    • 2002
  • The purpose of this study is to examine quantitatively the relationship between visual image quality and degradation In spatial resolution for a gamma camera by the increase in distance from collimator. The relationship between the portion(p) of images identified the difference of image quality and the difference(${\Delta}FWHM$) in FWHM between paired images was showed in a sigmoid curve. Using Dendy's method, minimum level to be correctly identified the difference of Image duality on three out of four occasion(p=0.75) was corresponded to 0.4 mm in ${\Delta}FWHM$. Using fuzzy theory, the level to be identified the difference of image quality was examined under various conditions. The truth-value of fuzzy sets-degraded or slightly degraded and not-degraded in image quality between palled Images-was gained the peak at 0.5 mm of ${\Delta}FWHM$. It was founded that changes of $0.4{\sim}0.5\;mm$ in FWHM-corresponding about 2 cm distance from collimator could be sufficiently identified in the difference of image quality.

  • PDF

A Comparative Study of Fuzzy Relationship and ANN for Landslide Susceptibility in Pohang Area (퍼지관계 기법과 인공신경망 기법을 이용한 포항지역의 산사태 취약성 예측 기법 비교 연구)

  • Kim, Jin Yeob;Park, Hyuck Jin
    • Economic and Environmental Geology
    • /
    • v.46 no.4
    • /
    • pp.301-312
    • /
    • 2013
  • Landslides are caused by complex interaction among a large number of interrelated factors such as topography, geology, forest and soils. In this study, a comparative study was carried out using fuzzy relationship method and artificial neural network to evaluate landslide susceptibility. For landslide susceptibility mapping, maps of the landslide occurrence locations, slope angle, aspect, curvature, lithology, soil drainage, soil depth, soil texture, forest type, forest age, forest diameter and forest density were constructed from the spatial data sets. In fuzzy relation analysis, the membership values for each category of thematic layers have been determined using the cosine amplitude method. Then the integration of different thematic layers to produce landslide susceptibility map was performed by Cartesian product operation. In artificial neural network analysis, the relative weight values for causative factors were determined by back propagation algorithm. Landslide susceptibility maps prepared by two approaches were validated by ROC(Receiver Operating Characteristic) curve and AUC(Area Under the Curve). Based on the validation results, both approaches show excellent performance to predict the landslide susceptibility but the performance of the artificial neural network was superior in this study area.

Face detection using fuzzy color classifier and convex-hull (Fuzzy Color Classifier 와 Convex-hull을 사용한 얼굴 검출)

  • Park, Min-Sik;Park, Chang-U;Kim, Won-Ha;Park, Min-Yong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.2
    • /
    • pp.69-78
    • /
    • 2002
  • This paper addresses a method to automatically detect out a person's face from a given image that consists of a hair and face view of the person and a complex background scene. Out method involves an effective detection algorithm that exploits the spatial distribution characteristics of human skin color via an adaptive fuzzy color classifier (AFCC), The universal skin-color map is derived on the chrominance component of human skin color in Cb, Cr and their corresponding luminance. The desired fuzzy system is applied to decide the skin color regions and those that are not. We use RGB model for extracting the hair color regions because the hair regions often show low brightness and chromaticity estimation of low brightness color is not stable. After some preprocessing, we apply convex-hull to each region. Consequent face detection is made from the relationship between a face's convex-hull and a head's convex-hull. The algorithm using the convex-hull shows better performance than the algorithm using pattern method. The performance of the proposed algorithm is shown by experiment. Experimental results show that the proposed algorithm successfully and efficiently detects the faces without constrained input conditions in color images.

Exploration and Verification of Submarine Groundwater Discharge on Jeju Island by Remotely Sensed Based Water Quality Analysis (시계열 수질 분석에 의한 제주도의 해저용출수 탐사 및 검증)

  • Baek Seung-Gyun;Park Maeng-Eon
    • Economic and Environmental Geology
    • /
    • v.38 no.4 s.173
    • /
    • pp.395-409
    • /
    • 2005
  • To explore submarine groundwater discharge (SGD) into the coastal zone of Jeju Island, the water quality analysis with seasonal remotely sensed data was carried out. If the groundwater is directly discharged into the ocean, the water quality of coastal zone is influenced. Therefore sea surface temperature (SST), the transparency, and Chlorophyll-a's concentration were analyzed for extracting the anomaly zone related with SGD using Landsat Thematic Mapper (TM) data acquired on April, August, and December. Then the spatial characteristics of springs, which located along the coastal area, were analyzed by CIS data integration based on Fuzzy logic. The integration results were compared with the anomaly zone extracted from Landsat TM data, and it is considered that springs has close relationship with SGD.

Image segmentation using fuzzy worm searching and adaptive MIN-MAX clustering based on genetic algorithm (유전 알고리즘에 기반한 퍼지 벌레 검색과 자율 적응 최소-최대 군집화를 이용한 영상 영역화)

  • Ha, Seong-Wook;Kang, Dae-Seong;Kim, Dai-Jin
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.12
    • /
    • pp.109-120
    • /
    • 1998
  • An image segmentation approach based on the fuzzy worm searching and MIN-MAX clustering algorithm is proposed in this paper. This algorithm deals with fuzzy worm value and min-max node at a gross scene level, which investigates the edge information including fuzzy worm action and spatial relationship of the pixels as the parameters of its objective function. But the conventional segmentation methods for edge extraction generally need the mask information for the algebraic model, and take long run times at mask operation, whereas the proposed algorithm has single operation according to active searching of fuzzy worms. In addition, we also propose both genetic fuzzy worm searching and genetic min-max clustering using genetic algorithm to complete clustering and fuzzy searching on grey-histogram of image for the optimum solution, which can automatically determine the size of ranges and has both strong robust and speedy calculation. The simulation results showed that the proposed algorithm adaptively divided the quantized images in histogram region and performed single searching methods, significantly alleviating the increase of the computational load and the memory requirements.

  • PDF

Tele-operated Control of an Autonomous Mobile Robot Using a Virtual Force-reflection

  • Tack, Han-Ho;Kim, Chang-Geun;Kang, Shin-Chul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.244-250
    • /
    • 2003
  • In this paper, the relationship between a slave robot and the uncertain remote environment is modeled as the impedance to generate the virtual force to feed back to the operator. For the control of a tele-operated mobile robot equipped with camera, the tele-operated mobile robot take pictures of remote environment and sends the visual information back to the operator over the Internet. Because of the limitation of communication bandwidth and narrow view-angles of camera, it is not possible to watch the environment clearly, especially shadow and curved areas. To overcome this problem, the virtual force is generated according to both the distance between the obstacle and robot and the approaching velocity of the obstacle. This virtual force is transferred back to the master over the Internet and the master(two degrees of freedom joystick), which can generate force, enables a human operator to estimate the position of obstacle in the remote environment. By holding this master, in spite of limited visual information, the operator can feel the spatial sense against the remote environment. This force reflection improves the performance of a tele-operated mobile robot significantly.

Study on Water Stage Prediction Using Hybrid Model of Artificial Neural Network and Genetic Algorithm (인공신경망과 유전자알고리즘의 결합모형을 이용한 수위예측에 관한 연구)

  • Yeo, Woon-Ki;Seo, Young-Min;Lee, Seung-Yoon;Jee, Hong-Kee
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.8
    • /
    • pp.721-731
    • /
    • 2010
  • The rainfall-runoff relationship is very difficult to predict because it is complicate factor affected by many temporal and spatial parameters of the basin. In recent, models which is based on artificial intelligent such as neural network, genetic algorithm fuzzy etc., are frequently used to predict discharge while stochastic or deterministic or empirical models are used in the past. However, the discharge data which are generally used for prediction as training and validation set are often estimated from rating curve which has potential error in its estimation that makes a problem in reliability. Therefore, in this study, water stage is predicted from antecedent rainfall and water stage data for short term using three models of neural network which trained by error back propagation algorithm and optimized by genetic algorithm and training error back propagation after it is optimized by genetic algorithm respectively. As the result, the model optimized by Genetic Algorithm gives the best forecasting ability which is not much decreased as the forecasting time increase. Moreover, the models using stage data only as the input data give better results than the models using precipitation data with stage data.