• 제목/요약/키워드: Fuzzy-PID Controller

검색결과 401건 처리시간 0.024초

복합자석형 자기부상차량의 PID제어와 Fuzzy제어 (PID control and fuzzy control of hybrid magnetic levitation system)

  • 권병일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.699-703
    • /
    • 1991
  • A magnetic levitation system with hybrid magnets, which is composed of permanent magnets and electromagnets, consumes less power than the conventional attraction type system. In this paper, we propose PID controller and PID-Fuzzy controller for hybrid magnet. We first present "constant gap" control technology with PID controller. Secondly, "zero power" control technology with PID-Fuzzy hybrid controller is presented.roller is presented.

  • PDF

Fuzzy-based PID Controller for Cascade Process Control

  • Tummaruckwattana, S.;Pannil, P.;Chaikla, A.;Tirasesth, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.268-271
    • /
    • 2004
  • This paper describes the development of a fuzzy logic control based on PID controller to improve the performances of the control system using conventional PID controller for the cascade process control systems. The structure of the proposed control system consists of two fuzzy-based PID controllers. One is used to eliminate the input disturbances of the inner loop and the other is used to regulate output response of the outer loop. The fuzzy PID design is derived from the linear-time continuous function of the conventional PID controller. The performance of the proposed controller is verified by MATLAB/SIMULINK simulation. Results of simulation studies demonstrates the outstanding of the control system using fuzzy-based PID controller in terms of reduced overshoot and fast response compared with the conventional PID controller.

  • PDF

유전 알고리즘을 이용한 전력계통의 부하주파수 제어를 위한 퍼지 전 보상 PID 제어기 설계 (Design of Fuzzy Precompensated PID Controller for Load Frequency Control of Power System using Genetic Algorithm)

  • 정형환;왕용필;이정필;정문규
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제49권2호
    • /
    • pp.62-69
    • /
    • 2000
  • In this paper, we design a GA-fuzzy precompensated PID controller for the load frequency control of two-area interconnected power system. Here, a fuzzy precompensated PID controller is designed as a fuzzy logic-based precompensation approach for PID controller. This scheme is easily implemented simply by adding a fuzzy precompensator to an existing PID controller. And we optimize the fuzzy precompensator with a genetic algorithm for complements the demerit such as the difficulty of the component selection of fuzzy controller, namely, scaling factor, membership function and control rules. Simulation results show that the proposed control technique is superior to a conventional PID control and a fuzzy precompensated PID control in dynamic responses about the load disturbances of power system and is convinced robustness reliableness in view of structure.

  • PDF

신경 회로망 기반 퍼지형 PID 제어기 설계 (Neural Network based Fuzzy Type PID Controller Design)

  • 임정흠;권정진;이창구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.86-86
    • /
    • 2000
  • This paper describes a neural network based fuzzy type PID control scheme. The PID controller is being widely used in industrial applications. however, it is difficult to determine the appropriate PID gains for (he nonlinear system control. In this paper, we re-analyzed the fuzzy controller as conventional PID controller structure, and proposed a neural network based fuzzy type PID controller whose scaling factors were adjusted automatically. The value of initial scaling factors of the proposed controller were determined on the basis of the conventional PID controller parameters tuning methods and then they were adjusted by using neural network control techniques. Proposed controller was simple in structure and computational burden was small so that on-line adaptation was easy to apply to. The result of practical experiment on the magnetic levitation system, which is known to be hard nonlinear, showed the proposed controller's excellent performance.

  • PDF

신경회로망 기반 자기동조 퍼지 PID 제어기 설계 (Design of a Neural Network Based Self-Tuning Fuzzy PID Controller)

  • 임정흠;이창구
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권1호
    • /
    • pp.22-30
    • /
    • 2001
  • This paper describes a neural network based fuzzy PID control scheme. The PID controller is being widely used in industrial applications. However, it is difficult to determine the appropriated PID gains in nonlinear systems and systems with long time delay and so on. In this paper, we re-analyzed the fuzzy controller as conventional PID controller structure, and proposed a neural network based self tuning fuzzy PID controller of which output gains were adjusted automatically. The tuning parameters of the proposed controller were determined on the basis of the conventional PID controller parameters tuning methods. Then they were adjusted by using proposed neural network learning algorithm. Proposed controller was simple in structure and computational burden was small so that on-line adaptation was easy to apply to. The experiment on the magnetic levitation system, which is known to be heavily nonlinear, showed the proposed controller's excellent performance.

  • PDF

A Combined Fuzzy -PID Controller

  • Jibril Jiya;Cheng Shao;Chai, Tian-You
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.465-468
    • /
    • 1998
  • In this paper, merits of both fuzzy and PID controllers are combined. The combined controller is designed such that the tuning of the PID controller is achieved by the basic fuzzy controller via its rule base. The proposed scheme avoids the tuning of PID parameters which is always a time consuming task, difficult to carry out and often poorly done. Computer simulations are made to demonstrate the satisfactory tracking performance of the combined fuzzy-PID controller.

  • PDF

BLDC 전동기의 속도 제어를 위한 퍼지 P+ID 제어기 설계 (The Design of Fuzzy P+ID Controller for Brushless DC Motor Speed Control)

  • 김영식;김성중
    • 한국산학기술학회논문지
    • /
    • 제7권5호
    • /
    • pp.823-829
    • /
    • 2006
  • 본 논문에서는 기존의 PID 제어기의 P 부분만을 퍼지 논리제어기로 대체한 퍼지 P+ID 제어기를 제안하였으며. 제안된 퍼지 P+ID 제어기는 단지 하나의 제어파라미터만을 추가하여 기존 PID 제어기를 조절하기 때문에 쉽게 설계 할 수 있으며, PID 제어기의 구조를 유지함으로서 기존 장치의 하드웨어 부분을 수정할 필요가 없다. 또한, 퍼지 P+ID 제어기는 기존 PID 제어기와 비교해서 충분한 안정성을 보여주며, 구조가 단순하고 계산 량이 적어 제어기의 동조시간을 기존의 퍼지 제어기에 비해서 많이 줄일 수 있는 장점이 있다. 제안된 Fuzzy P+ID 제어기를 BLDC 모터에 적용하여, 시뮬레이션 및 실험을 통하여 본 논문에서 제안한 제어기가 기존의 제어기보다 제어성능이 우수함을 확인하였다.

  • PDF

자기부상시스템을 위한 교수-학습 최적화 알고리즘 기반의 퍼지 PID 제어기 설계 (Design of TLBO-based Optimal Fuzzy PID Controller for Magnetic Levitation System)

  • 조재훈;김용태
    • 전기학회논문지
    • /
    • 제66권4호
    • /
    • pp.701-708
    • /
    • 2017
  • This paper proposes an optimum design method using Teaching-Learning-based optimization for the fuzzy PID controller of Magnetic levitation rail-guided vehicle. Since an attraction-type levitation system is intrinsically unstable, it is difficult to completely satisfy the desired performance through the conventional control methods. In the paper, a fuzzy PID controller with fixed parameters is applied and then the optimum parameters of fuzzy PID controller are selected by Teaching-Learning optimization. For the fitness function of Teaching-Learning optimization, the performance index of PID controller is used. To verify the performances of the proposed method, we use a Maglev model and compare the proposed method with the performance of PID controller. The simulation results show that the proposed method is more effective than conventional PID controller.

PID 이득 동조를 위한 퍼지 스케줄링 (Fuzzy Scheduling for the PID Gain Tuning)

  • 신위재
    • 한국지능시스템학회논문지
    • /
    • 제15권1호
    • /
    • pp.120-125
    • /
    • 2005
  • 본 논문에서는 PID 제어기의 이득 동조를 위한 퍼지 제어기를 제안한다. 제안한 제어기는 PID 제어기의 크리스퍼 출력 오차를 그대로 사용하지 않는 전단 퍼지화기에서 추론단계는 갖지만 Rule Table은 갖지 않는 특징이 있으며, 출력 소속 함수에 두 변수의 관계와 범위를 이용 도식화된 영역에서 비퍼지화 시킨 비선형 출력값을 PID 계수에 부가하는 새로운 Fuzzy PID 제어기를 제안한다. 여기서 Kp, Kd 계수의 최대, 최소 범위를 설정하여 퍼지추론에 의해 새로운 Kp, Kd 계수론 구한다. Ki 계수는 Ziegler-Nichols 동조 규칙을 사용하여 구하였고, 제안한 제어기는 유압서보모터 제어시스템에 의해 실험하였으며 실험결과 양호한 제어특성을 통해 원하는 결과를 얻을 수 있었다.

Design of a Fuzzy P+ID controller for brushless DC motor speed control

  • Kim, Young-Sik;Kim, Sung-Joong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.627-630
    • /
    • 2004
  • The PID type controller has been widely used in industrial application due to its simply control structure, ease of design, and inexpensive cost. However, control performance of the PID type controller suffers greatly from high uncertainty and nonlinearity of the system, large disturbances and so on. This paper presents a hybrid fuzzy logic proportional plus conventional integral derivative controller (fuzzy P+ID). In comparison with a conventional PID controller, only one additional parameter has to be adjusted to tune the fuzzy P+ID controller. In this case, the stability of a system remains unchanged after the PID controller is replaced by the fuzzy P+ID controller without modifying the original controller parameters. Finally, the proposed hybrid fuzzy P+ID controller is applied to BLDC motor drive. Simulation results demonstrated that the control performance of the proposed controller is better than that of the conventional controller.

  • PDF