• Title/Summary/Keyword: Fuzzy-Neural Control

Search Result 659, Processing Time 0.028 seconds

A Study of Prediction of Daily Water Supply Usion ANFIS (ANFIS를 이용한 상수도 1일 급수량 예측에 관한 연구)

  • Rhee, Kyoung-Hoon;Moon, Byoung-Seok;Kang, Il-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.6
    • /
    • pp.821-832
    • /
    • 1998
  • This study investigates the prediction of daily water supply, which is a necessary for the efficient management of water distribution system. Fuzzy neuron, namely artificial intelligence, is a neural network into which fuzzy information is inputted and then processed. In this study, daily water supply was predicted through an adaptive learning method by which a membership function and fuzzy rules were adapted for daily water supply prediction. This study was investigated methods for predicting water supply based on data about the amount of water supplied to the city of Kwangju. For variables choice, four analyses of input data were conducted: correlation analysis, autocorrelation analysis, partial autocorrelation analysis, and cross-correlation analysis. Input variables were (a) the amount of water supplied (b) the mean temperature, and (c)the population of the area supplied with water. Variables were combined in an integrated model. Data of the amount of daily water supply only was modelled and its validity was verified in the case that the meteorological office of weather forecast is not always reliable. Proposed models include accidental cases such as a suspension of water supply. The maximum error rate between the estimation of the model and the actual measurement was 18.35% and the average error was lower than 2.36%. The model is expected to be a real-time estimation of the operational control of water works and water/drain pipes.

  • PDF

A Traction System Control Method for 2 Motor Driven Electric Vehicle (독립 구동형 전기자동차의 추진 시스템 제어 기법)

  • 박정우;하회두;김흥근
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.357-367
    • /
    • 1999
  • When traction system of 2-motor driven electric vehicle(EV) is consisted of two motors (IPMSM) . two inverters. and one traction controller, control performances of IPMSM for an electric vehicle is affected by parameter variation b because of large current magnitude and wide current phase angle. To solve this problem, new parameter estimator for L Ld and Lq is constructed by neu때 network technique. And new vector control algorithm with parameter estimator by n neural network is proposed for IPMSM.And also. an advanced traction control algorithm is proposed using fuzzy c controller in order to enhance the driveability oftwo-wheel drive EVs with fitted with a traction control system Performances of the proposed algorithm are examined by simulations and the experimental resul않 with respect to t the prototype IPMSM and EV.

  • PDF

Efficiency Optimization Control of SynRM Drive using Multi-AFLC (다중 AFLC를 이용한 SynRM 드라이브의 효율 최적화 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Jang, Mi-Geum;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.44-54
    • /
    • 2010
  • Optimal efficiency control of synchronous reluctance motor(SynRM) is very important in the sense of energy saving and conservation of natural environment because the efficiency of the SynRM is generally lower than that of other types of AC motors. This paper is proposed a novel efficiency optimization control of SynRM considering iron loss using multi adaptive fuzzy learning controller(AFLC). The optimal current ratio between torque current and exciting current is analytically derived to drive SynRM at maximum efficiency. This paper is proposed an efficiency optimization control for the SynRM which minimizes the copper and iron losses. There exists a variety of combinations of d and q-axis current which provide a specific motor torque. The objective of the efficiency optimization control is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. The control performance of the proposed controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm.

Control Performance Evaluation of Smart Mid-story Isolation System with RNN Model (RNN 모델을 이용한 스마트 중간층 면진시스템의 제어성능 평가)

  • Kim, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.774-779
    • /
    • 2020
  • The seismic response reduction capacity of a smart mid-story isolation system was investigated using the RNN model in this study. For this purpose, an RNN model was developed to make a dynamic response prediction of building structures subjected to seismic loads. An existing tall building with a mid-story isolation system was selected as an example structure for realistic research. A smart mid-story isolation system was comprised of an MR damper instead of existing lead dampers. The RNN model predicted the seismic responses accurately compared to those of the FEM model. The simulation time of the RNN model can be reduced significantly compared to the FEM model. After the numerical simulations, the smart mid-story isolation system could effectively reduce the seismic responses of the existing building compared to the conventional mid-story isolation system.

Optimum design and vibration control of a space structure with the hybrid semi-active control devices

  • Zhan, Meng;Wang, Sheliang;Yang, Tao;Liu, Yang;Yu, Binshan
    • Smart Structures and Systems
    • /
    • v.19 no.4
    • /
    • pp.341-350
    • /
    • 2017
  • Based on the super elastic properties of the shape memory alloy (SMA) and the inverse piezoelectric effect of piezoelectric (PZT) ceramics, a kind of hybrid semi-active control device was designed and made, its mechanical properties test was done under different frequency and different voltage. The local search ability of genetic algorithm is poor, which would fall into the defect of prematurity easily. A kind of adaptive immune memory cloning algorithm(AIMCA) was proposed based on the simulation of clone selection and immune memory process. It can adjust the mutation probability and clone scale adaptively through the way of introducing memory cell and antibody incentive degrees. And performance indicator based on the modal controllable degree was taken as antigen-antibody affinity function, the optimization analysis of damper layout in a space truss structure was done. The structural seismic response was analyzed by applying the neural network prediction model and T-S fuzzy logic. Results show that SMA and PZT friction composite damper has a good energy dissipation capacity and stable performance, the bigger voltage, the better energy dissipation ability. Compared with genetic algorithm, the adaptive immune memory clone algorithm overcomes the problem of prematurity effectively. Besides, it has stronger global searching ability, better population diversity and faster convergence speed, makes the damper has a better arrangement position in structural dampers optimization leading to the better damping effect.

ANN Rotor Resistance Estimation of Induction Motor Drive using Multi-AFLC (다중 AFLC를 이용한 유도전동기 드라이브의 ANN 회전자저항 추정)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.4
    • /
    • pp.45-56
    • /
    • 2011
  • This paper is proposed artificial neural network(ANN) rotor resistance estimation of induction motor drive controlled by multi-adaptive fuzzy learning controller(AFLC). A simple double layer feedforward ANN trained by the back-propagation technique is employed in the rotor resistance identification. In this estimator, double models of the state variable estimations are used; one provides the actual induction motor output states and the other gives the ANN model output states. The total error between the desired and actual state variables is then back propagated to adjust the weights of the ANN model, so that the output of this model tracks the actual output. When the training is completed, the weights of the ANN correspond to the parameters in the actual motor. The estimation and control performance of ANN and multi-AFLC is evaluated by analysis for various operating conditions. Also, this paper is proposed the analysis results to verify the effectiveness of this controller.

Real-time Remote Diagnosis and Control System for the Piggery Wastewater Treatment Plant using Neural Networks and fuzzy Logic (신경망과 퍼지를 이용한 축산폐수처리플랜트의 실시간 원격 진단ㆍ제어 시스템)

  • Seo, Hyun-Yong;Kim, Sung-Sin;Bae, Hyun;Jeon, Byung-Hee;Kim, Chang-Won
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.107-110
    • /
    • 2003
  • 산업의 발달과 인구의 증가로 인한 물 사용량 증가와 다양한 폐수들이 끊임없이 발생하고 있다. 회사나 공장들은 이러한 폐수를 처리하기 위한 하ㆍ폐수처리장의 효율적인 운전을 위하여 관리ㆍ제어 시스템을 도입하고 있는 추세이다. 본 논문에서는 김해에 설치되어 있는 축산 폐수를 처리하는 파일럿 플랜트의 공정상태를 원격으로 관리할 수 있는 모니터링 시스템을 바탕으로 퍼지와 신경망을 이용한 실시간 원격 진단 및 제어 시스템을 설계하였다. 또한 여러 경우의 고장 사례를 원격 진단ㆍ제어 시스템에 접목시킴으로써 진단시스템의 성능을 더욱 향상 시켰다. 이러한 진단ㆍ제어 시스템을 이용하여 관리자는 공정상태를 항상 모니터링 할 수 있으며, 진단ㆍ제어 시스템에서 제공하는 경고 및 제어 값을 축산폐수플랜트에 전송함으로써 공정을 보다 효율적이고 안정적으로 진단ㆍ제어할 수 있다.

  • PDF

Optimal Placement of Measurement Using GAs in Harmonic State Estimation of Power System (전력시스템 고조파 상태 춘정에서 GA를 미용한 최적 측정위치 선정)

  • 정형환;왕용필;박희철;안병철
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.8
    • /
    • pp.471-480
    • /
    • 2003
  • The design of a measurement system to perform Harmonic State Estimation (HSE) is a very complex problem. Among the reasons for its complexity are the system size, conflicting requirements of estimator accuracy, reliability in the presence of transducer noise and data communication failures, adaptability to change in the network topology and cost minimization. In particular, the number of harmonic instruments available is always limited. Therefore, a systematic procedure is needed to design the optimal placement of measurement points. This paper presents a new HSE algorithm which is based on an optimal placement of measurement points using Genetic Algorithms (GAs) which is widely used in areas such as: optimization of the objective function, learning of neural networks, tuning of fuzzy membership functions, machine learning, system identification and control. This HSE has been applied to the Simulation Test Power System for the validation of the new HSE algorithm. The study results have indicated an economical and effective method for optimal placement of measurement points using Genetic Algorithms (GAs) in the Harmonic State Estimation (HSE).

A system model for reliability assessment of smart structural systems

  • Hassan, Maguid H.M.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.5
    • /
    • pp.455-468
    • /
    • 2006
  • Smart structural systems are defined as ones that demonstrate the ability to modify their characteristics and/or properties in order to respond favorably to unexpected severe loading conditions. The performance of such a task requires a set of additional components to be integrated within such systems. These components belong to three major categories, sensors, processors and actuators. It is wellknown that all structural systems entail some level of uncertainty, because of their extremely complex nature, lack of complete information, simplifications and modeling. Similarly, sensors, processors and actuators are expected to reflect a similar uncertain behavior. As it is imperative to be able to evaluate the impact of such components on the behavior of the system, it is as important to ensure, or at least evaluate, the reliability of such components. In this paper, a system model for reliability assessment of smart structural systems is outlined. The presented model is considered a necessary first step in the development of a reliability assessment algorithm for smart structural systems. The system model outlines the basic components of the system, in addition to, performance functions and inter-relations among individual components. A fault tree model is developed in order to aggregate the individual underlying component reliabilities into an overall system reliability measure. Identification of appropriate limit states for all underlying components are beyond the scope of this paper. However, it is the objective of this paper to set up the necessary framework for identifying such limit states. A sample model for a three-story single bay smart rigid frame, is developed in order to demonstrate the proposed framework.

Comparative Study of PI, FNN and ALM-FNN for High Control of Induction Motor Drive (유도전동기 드라이브의 고성능 제어를 위한 PI, FNN 및 ALM-FNN 제어기의 비교연구)

  • Kang, Sung-Jun;Ko, Jae-Sub;Choi, Jung-Sik;Jang, Mi-Geum;Back, Jung-Woo;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.408-411
    • /
    • 2009
  • In this paper, conventional PI, fuzzy neural network(FNN) and adaptive teaming mechanism(ALM)-FNN for rotor field oriented controlled(RFOC) induction motor are studied comparatively. The widely used control theory based design of PI family controllers fails to perform satisfactorily under parameter variation nonlinear or load disturbance. In high performance applications, it is useful to automatically extract the complex relation that represent the drive behaviour. The use of learning through example algorithms can be a powerful tool for automatic modelling variable speed drives. They can automatically extract a functional relationship representative of the drive behavior. These methods present some advantages over the classical ones since they do not rely on the precise knowledge of mathematical models and parameters. Comparative study of PI, FNN and ALM-FNN are carried out from various aspects which is dynamic performance, steady-state accuracy, parameter robustness and complementation etc. To have a clear view of the three techniques, a RFOC system based on a three level neutral point clamped inverter-fed induction motor drive is established in this paper. Each of the three control technique: PI, FNN and ALM-FNN, are used in the outer loops for rotor speed. The merit and drawbacks of each method are summarized in the conclusion part, which may a guideline for industry application.

  • PDF