• Title/Summary/Keyword: Fuzzy-ARTMAP

Search Result 25, Processing Time 0.026 seconds

Channel Equalization using Fuzzy-ARTMAP Neural Network

  • Lee, Jung-Sik;Kim, Jin-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.7C
    • /
    • pp.705-711
    • /
    • 2003
  • This paper studies the application of a fuzzy-ARTMAP neural network to digital communications channel equalization. This approach provides new solutions for solving the problems, such as complexity and long training, which found when implementing the previously developed neural-basis equalizers. The proposed fuzzy-ARTMAP equalizer is fast and easy to train and includes capabilities not found in other neural network approaches; a small number of parameters, no requirements for the choice of initial weights, automatic increase of hidden units, no risk of getting trapped in local minima, and the capability of adding new data without retraining previously trained data. In simulation studies, binary signals were generated at random in a linear channel with Gaussian noise. The performance of the proposed equalizer is compared with other neural net basis equalizers, specifically MLP and RBF equalizers.

Land use classification using CBERS-1 data

  • Wang, Huarui;Liu, Aixia;Lu, Zhenhjun
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.709-714
    • /
    • 2002
  • This paper discussed and analyzed results of different classification algorithms for land use classification in arid and semiarid areas using CBERS-1 image, which in case of our study is Shihezi Municipality, Xinjiang Province. Three types of classifiers are included in our experiment, including the Maximum Likelihood classifier, BP neural network classifier and Fuzzy-ARTMAP neural network classifier. The classification results showed that the classification accuracy of Fuzzy-ARTMAP was the best among three classifiers, increased by 10.69% and 6.84% than Maximum likelihood and BP neural network, respectively. Meanwhile, the result also confirmed the practicability of CBERS-1 image in land use survey.

  • PDF

Concentration estimation of gas mixtures using a tin oxide gas sensor and fuzzy ART (반도체식 가스센서와 퍼지 ART를 이용한 혼합가스의 농도 추정)

  • Lee Jeong-Hun;Cho Jung-Hwan;Jeon Gi-Joon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.4 s.310
    • /
    • pp.21-29
    • /
    • 2006
  • A fuzzy ARTMAP neural network and a fuzzy ART neural network are proposed to identify $H_2S,\;NH_3$, and their mixtures and to estimate their concentrations, respectively. Features are extracted from a tin oxide gas sensor operated in a thermal modulation plan. After dimensions of the features are reduced by a preprocessing scheme, the features are fed into the proposed fuzzy neural networks. By computer simulations, the proposed method is shown to be fast in learning and stable in concentration estimating compared with other methods.

Bearing Multi-Faults Detection of an Induction Motor using Acoustic Emission Signals and Texture Analysis (음향 방출 신호와 질감 분석을 이용한 유도전동기의 베어링 복합 결함 검출)

  • Jang, Won-Chul;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.4
    • /
    • pp.55-62
    • /
    • 2014
  • This paper proposes a fault detection method utilizing converted images of acoustic emission signals and texture analysis for identifying bearing's multi-faults which frequently occur in an induction motor. The proposed method analyzes three texture features from the converted images of multi-faults: multi-faults image's entropy, homogeneity, and energy. These extracted features are then used as inputs of a fuzzy-ARTMAP to identify each multi-fault including outer-inner, inner-roller, and outer-roller. The experimental results using ten times trials indicate that the proposed method achieves 100% accuracy in the fault classification.

Design of a Recognizing System for Vehicle's License Plates with English Characters

  • Xing, Xiong;Choi, Byung-Jae;Chae, Seog;Lee, Mun-Hee
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.3
    • /
    • pp.166-171
    • /
    • 2009
  • In recent years, video detection systems have been implemented in various infrastructures such as airport, public transportation, power generation system, water dam and so on. Recognizing moving objects in video sequence is an important problem in computer vision, with applications in several fields, such as video surveillance and target tracking. Segmentation and tracking of multiple vehicles in crowded situations is made difficult by inter-object occlusion. In the system described in this paper, the mean shift algorithm is firstly used to filter and segment a color vehicle image in order to get candidate regions. These candidate regions are then analyzed and classified in order to decide whether a candidate region contains a license plate or not. And then some characters in the license plate is recognized by using the fuzzy ARTMAP neural network, which is a relatively new architecture of the neural network family and has the capability to learn incrementally unlike the conventional BP network. We finally design a license plate recognition system using the mean shift algorithm and fuzzy ARTMAP neural network and show its performance via some computer simulations.

Design of a Korean Character Vehicle License Plate Recognition System (퍼지 ARTMAP에 의한 한글 차량 번호판 인식 시스템 설계)

  • Xing, Xiong;Choi, Byung-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.2
    • /
    • pp.262-266
    • /
    • 2010
  • Recognizing a license plate of a vehicle has widely been issued. In this thesis, firstly, mean shift algorithm is used to filter and segment a color vehicle image in order to get candidate regions. These candidate regions are then analyzed and classified in order to decide whether a candidate region contains a license plate. We then present an approach to recognize a vehicle's license plate using the Fuzzy ARTMAP neural network, a relatively new architecture of the neural network family. We show that the proposed system is well to recognize the license plate and shows some compute simulations.

Quantitative analysis of gas mixtures using a tin oxide gas sensor and fast pattern recognition methods (반도체식 가스센서와 패턴인식방법을 이용한 혼합가스의 정량적 분석)

  • Lee, Jeong-Hun;Cho, Jung-Hwan;Jeon, Gi-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.138-140
    • /
    • 2005
  • A fuzzy ARTMAP neural network and a fuzzy ART neural network are proposed to identify $H_2S$, $NH_3$ and their mixtures and to estimate their concentrations, respectively. Features are extracted from a micro gas sensor array operated in a thermal modulation plan. After dimensions of the features are reduced by a preprocessing scheme, the features are fed into the proposed fuzzy neural networks. By computer simulations, the proposed methods are shown to be fast in learning and accurate in concentration estimating. The results are compared with other methods and discussed.

  • PDF

On-line drift compensation of a tin oxide gas sensor for identification of gas mixtures (혼합가스 식별을 위한 반도체식 가스센서의 온라인 드리프트 보상)

  • Shin, Jung-Yeop;Cho, Jeong-Hwan;Jeon, Gi-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.130-132
    • /
    • 2005
  • This paper presents two ART-based neural networks for the identification of gas mixtures subject to the drift. A fuzzy ARTMAP neural network is used for classifying $H_2S$, $NH_3$ and their mixture gases including a reference gas. The other fuzzy ART neural network is utilized to detect the drift of a tin oxide gas sensor by tracking a cluster center of the reference gas. After detecting the drift, the previous cluster center of each gas is updated as much as the drift of the reference gas. By the simulations, the proposed method is shown to compensate the drift on-line without making many categories of target gases compared with the previous studies.

  • PDF

Pattern Recognition Using Spectrum Analyzer and Neural Network (신경망의 스펙트럼 분석기를 이용한 패턴 인식)

  • 김남익;한수환;전도홍
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.211-214
    • /
    • 1996
  • This paper propose a method for pattern recogniton using spectrum analyzer and fuzzy ARTMAP. Contour sequences obtained from 2-D planar images represent the Euclidean distance between the centroid and all boundary pixels of the shape, and are related to the overall shape of the images. The Fourier transform of contour sequence and spectrum analyzer are used as a means of feature selection and data reduction. The three dimensional spectral feature vectors are extracted by spectrum analyzer from the FFT spectrum. These Spectral feature vectors are invariant to shape translation, rotation, and scale transformations. The fuzzy ARTMAP neural network which is combined with two fuzzy ART modules is trained and tested with these feature vectors. The experiments include 4 aircrafts and 4 industrial parts recognition process are presented to illustrate the high performance of this proposed method in the ion problems of noisv shapes.

  • PDF

Queue Detection using Fuzzy-Based Neural Network Model (퍼지기반 신경망모형을 이용한 대기행렬 검지)

  • KIM, Daehyon
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.2
    • /
    • pp.63-70
    • /
    • 2003
  • Real-time information on vehicle queue at intersections is essential for optimal traffic signal control, which is substantial part of Intelligent Transport Systems (ITS). Computer vision is also potentially an important element in the foundation of integrated traffic surveillance and control systems. The objective of this research is to propose a method for detecting an exact queue lengths at signalized intersections using image processing techniques and a neural network model Fuzzy ARTMAP, which is a supervised and self-organizing system and claimed to be more powerful than many expert systems, genetic algorithms. and other neural network models like Backpropagation, is used for recognizing different patterns that come from complicated real scenes of a car park. The experiments have been done with the traffic scene images at intersections and the results show that the method proposed in the paper could be efficient for the noise, shadow, partial occlusion and perspective problems which are inevitable in the real world images.