• Title/Summary/Keyword: Fuzzy linear maps

Search Result 9, Processing Time 0.018 seconds

A Note on the Fuzzy Linear Maps

  • Kim, Chang-Bum
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.506-511
    • /
    • 2011
  • In this paper we investigate some situations in connection with two exact sequences of fuzzy linear maps. Also we obtain a generalization of the work [Theorem4] of Pan [5], and we study the analogies of The Four Lemma and The Five Lemma of homological algebra. Finally we obtain a special exact sequence.

The Linear Discrepancy of a Fuzzy Poset

  • Cheong, Min-Seok;Chae, Gab-Byung;Kim, Sang-Mok
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.1
    • /
    • pp.59-64
    • /
    • 2011
  • In 2001, the notion of a fuzzy poset defined on a set X via a triplet (L, G, I) of functions with domain X ${\times}$ X and range [0, 1] satisfying a special condition L+G+I = 1 is introduced by J. Negger and Hee Sik Kim, where L is the 'less than' function, G is the 'greater than' function, and I is the 'incomparable to' function. Using this approach, we are able to define a special class of fuzzy posets, and define the 'skeleton' of a fuzzy poset in view of major relation. In this sense, we define the linear discrepancy of a fuzzy poset of size n as the minimum value of all maximum of I(x, y)${\mid}$f(x)-f(y)${\mid}$ for f ${\in}$ F and x, y ${\in}$ X with I(x, y) > $\frac{1}{2}$, where F is the set of all injective order-preserving maps from the fuzzy poset to the set of positive integers. We first show that the definition is well-defined. Then, it is shown that the optimality appears at the same injective order-preserving maps in both cases of a fuzzy poset and its skeleton if the linear discrepancy of a skeleton of a fuzzy poset is 1.

On The Completeness of $ F(X, Y)

  • Rhie, Gil-Seob;Sung, Yeoul-Ouk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.9-12
    • /
    • 1994
  • Let X, Y be normed linear spaces, and let p$_{1}$, p.sub 2/ be lower semi-continuous fuzzy norms on X, Y respectively, and have the bounded supports on X, Y respectively. In this paper, we prove that if Y is conplete, the set of all fuzzy continuous linear maps from X into Y is a fuzzy complete fuzzy normed linear space.

  • PDF

Fuzzy Regression Analysis Using Fuzzy Neural Networks (퍼지 신경망에 의한 퍼지 회귀분석)

  • Kwon, Ki-Taek
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.2
    • /
    • pp.371-383
    • /
    • 1997
  • This paper propose a fuzzy regression method using fuzzy neural networks when a membership value is attached to each input-output pair. First, a method of linear fuzzy regression analysis is described by interpreting the reliability of each input-output pair as its membership values. Next, an architecture of fuzzy neural networks with fuzzy weights and fuzzy biases is shown. The fuzzy neural network maps a crisp input vector to a fuzzy output. A cost function is defined using the fuzzy output from the fuzzy neural network and the corresponding target output with a membership value. A learning algorithm is derived from the cost function. The derived learning algorithm trains the fuzzy neural network so that the level set of the fuzzy output includes the target output. Last, the proposed method is illustrated by computer simulations on numerical examples.

  • PDF

A new viewpoint on stability theorem for engineering structural and geotechnical parameter

  • Timothy Chen;Ruei-Yuan Wang;Yahui Meng;Z.Y. Chen
    • Geomechanics and Engineering
    • /
    • v.36 no.5
    • /
    • pp.475-487
    • /
    • 2024
  • Many uncertainties affect the stability assessment of rock structures. Some of these factors significantly influence technology decisions. Some of these factors belong to the geological domain, and spatial uncertainty measurements are useful for structural stability analysis. This paper presents an integrated approach to study the stability of rock structures, including spatial factors. This study models two main components: discrete structures (fault zones) and well known geotechnical parameters (rock quality indicators). The geostatistical modeling criterion are used to quantify geographic uncertainty by producing simulated maps and RQD values for multiple equally likely error regions. Slope stability theorem would be demonstrated by modeling local failure zones and RQDs. The approach proided is validated and finally, the slope stability analysis method and fuzzy Laypunov criterion are applied to mining projects with limited measurement data. The goals of this paper are towards access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable human settlement planning and manage. Simulation results of linear and nonlinear structures show that the proposed method is able to identify structural parameters and their changes due to damage and unknown excitations. Therefore, the goal is believed to achieved in the near future by the ongoing development of AI and fuzzy theory.

Remote Sensing Information Models for Sediment and Soil

  • Ma, Ainai
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.739-744
    • /
    • 2002
  • Recently we have discovered that sediments should be separated from lithosphere, and soil should be separated from biosphere, both sediment and soil will be mixed sediments-soil-sphere (Seso-sphere), which is using particulate mechanics to be solved. Erosion and sediment both are moving by particulate matter with water or wind. But ancient sediments will be erosion same to soil. Nowadays, real soil has already reduced much more. Many places have only remained sediments that have ploughed artificial farming layer. Thus it means sediments-soil-sphere. This paper discusses sediments-soil-sphere erosion modeling. In fact sediments-soil-sphere erosion is including water erosion, wind erosion, melt-water erosion, gravitational water erosion, and mixed erosion. We have established geographical remote sensing information modeling (RSIM) for different erosion that was using remote sensing digital images with geographical ground truth water stations and meteorological observatories data by remote sensing digital images processing and geographical information system (GIS). All of those RSIM will be a geographical multidimensional gray non-linear equation using mathematics equation (non-dimension analysis) and mathematics statistics. The mixed erosion equation is more complex that is a geographical polynomial gray non-linear equation that must use time-space fuzzy condition equations to be solved. RSIM is digital image modeling that has separated physical factors and geographical parameters. There are a lot of geographical analogous criterions that are non-dimensional factor groups. The geographical RSIM could be automatic to change them analogous criterions to be fixed difference scale maps. For example, if smaller scale maps (1:1000 000) that then will be one or two analogous criterions and if larger scale map (1:10 000) that then will be four or five analogous criterions. And the geographical parameters that are including coefficient and indexes will change too with images. The geographical RSIM has higher precision more than mathematics modeling even mathematical equation or mathematical statistics modeling.

  • PDF

Development of Korean Tissue Probability Map from 3D Magnetic Resonance Images (3차원 MR 영상으로부터의 한국인 뇌조직확률지도 개발)

  • Jung Hyun, Kim;Jong-Min, Lee;Uicheul, Yoon;Hyun-Pil, Kim;Bang Bon, Koo;In Young, Kim;Dong Soo, Lee;Jun Soo, Kwon;Sun I., Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.323-328
    • /
    • 2004
  • The development of group-specific tissue probability maps (TPM) provides a priori knowledge for better result of cerebral tissue classification with regard to the inter-ethnic differences of inter-subject variability. We present sequential procedures of group-specific TPM and evaluate the age effects in the structural differences of TPM. We investigated 100 healthy volunteers with high resolution MRI scalming. The subjects were classified into young (60, 25.92+4.58) and old groups (40, 58.83${\pm}$8.10) according to the age. To avoid any bias from random selected single subject and improve registration robustness, average atlas as target for TPM was constructed from skull-stripped whole data using linear and nonlinear registration of AIR. Each subject was segmented into binary images of gray matter, white matter, and cerebrospinal fluid using fuzzy clustering and normalized into the space of average atlas. The probability images were the means of these binary images, and contained values in the range of zero to one. A TPM of a given tissue is a spatial probability distribution representing a certain subject population. In the spatial distribution of tissue probability according to the threshold of probability, the old group exhibited enlarged ventricles and overall GM atrophy as age-specific changes, compared to the young group. Our results are generally consistent with the few published studies on age differences in the brain morphology. The more similar the morphology of the subject is to the average of the population represented by the TPM, the better the entire classification procedure should work. Therefore, we suggest that group-specific TPM should be used as a priori information for the cerebral tissue classification.