• Title/Summary/Keyword: Fuzzy k-means algorithm

Search Result 216, Processing Time 0.024 seconds

An Identification Technique Based on Adaptive Radial Basis Function Network for an Electronic Odor Sensing System

  • Byun, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.151-155
    • /
    • 2011
  • A variety of pattern recognition algorithms including neural networks may be applicable to the identification of odors. In this paper, an identification technique for an electronic odor sensing system applicable to wound state monitoring is presented. The performance of the radial basis function(RBF) network is highly dependent on the choice of centers and widths in basis function. For the fine tuning of centers and widths, those parameters are initialized by an ill-conditioned genetic fuzzy c-means algorithm, and the distribution of input patterns in the very first stage, the stochastic gradient(SG), is adapted. The adaptive RBF network with singular value decomposition(SVD), which provides additional adaptation capabilities to the RBF network, is used to process data from array-based gas sensors for early detection of wound infection in burn patients. The primary results indicate that infected patients can be distinguished from uninfected patients.

A Study on the Development of Urine Analysis System using Strip and Evaluation of Experimental Result by means of Fuzzy Inference (스트립을 이용한 요분석시스템의 개발과 퍼지추론에 의한 검사결과 평가에 관한 연구)

  • Jun, K. R.;Lee, S. J.;Choi, B. C.;An, S. H.;Ha, K.;Kim, J. Y.;Kim, J. H.
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.477-486
    • /
    • 1998
  • In this paper, we implemented the urine analysis system capable of measuring a qualitative and semi-quantitative and assay using strip. The analysis algorithm of urine analysis was adopted a fuzzy logic-based classifiers that was robust to external error factors such as temperature and electric power noises. The spectroscopic properties of 9 pads In a strip were studied to developing the urine analysis system was designed for robustnesss and stability. The urine analysis system was consisted of hardware and software. The hardware of the urine analysis system was based on one-chip microprocessor, and Its peripherals which composed of optic modulo, tray control, preamplifier, communication with PC, thermal printer and operating status indicator. The software of the urine analysis system was composed of system program and classification program. The system program did duty fort system control, data acquisition and data analysis. The classification program was composed of fuzzy inference engine and membership function generator. The membership function generator made triangular membership functions by statical method for quality control. Resulted data was transferred through serial cable to PC. The transferred data was arranged and saved be data acquisition program coded by C+ + language. The precision of urine analysis system and the stability of fuzzy classifier were evaluated by testing the standard urine samples. Experimental results showed a good stability states and a exact classification.

  • PDF

The Shot Change Detection Using a Hybrid Clustering (하이브리드 클러스터링을 이용한 샷 전환 검출)

  • Lee, Ji-Hyun;Kang, Oh-Hyung;Na, Do-Won;Lee, Yang-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.635-638
    • /
    • 2005
  • The purpose of video segmentation is to segment video sequence into shots where each shot represents a sequence of frames having the same contents, and then select key frames from each shot for indexing. There are two types of shot changes, abrupt and gradual. The major problem of shot change detection lies on the difficulty of specifying the correct threshold, which determines the performance of shot change detection. As to the clustering approach, the right number of clusters is hard to be found. Different clustering may lead to completely different results. In this thesis, we propose a video segmentation method using a color-X$^2$ intensity histogram-based fuzzy c-means clustering algorithm.

  • PDF

Detection of Text Candidate Regions using Region Information-based Genetic Algorithm (영역정보기반의 유전자알고리즘을 이용한 텍스트 후보영역 검출)

  • Oh, Jun-Taek;Kim, Wook-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.70-77
    • /
    • 2008
  • This paper proposes a new text candidate region detection method that uses genetic algorithm based on information of the segmented regions. In image segmentation, a classification of the pixels at each color channel and a reclassification of the region-unit for reducing inhomogeneous clusters are performed. EWFCM(Entropy-based Weighted C-Means) algorithm to classify the pixels at each color channel is an improved FCM algorithm added with spatial information, and therefore it removes the meaningless regions like noise. A region-based reclassification based on a similarity between each segmented region of the most inhomogeneous cluster and the other clusters reduces the inhomogeneous clusters more efficiently than pixel- and cluster-based reclassifications. And detecting text candidate regions is performed by genetic algorithm based on energy and variance of the directional edge components, the number, and a size of the segmented regions. The region information-based detection method can singles out semantic text candidate regions more accurately than pixel-based detection method and the detection results will be more useful in recognizing the text regions hereafter. Experiments showed the results of the segmentation and the detection. And it confirmed that the proposed method was superior to the existing methods.

Design of Summer Very Short-term Precipitation Forecasting Pattern in Metropolitan Area Using Optimized RBFNNs (최적화된 다항식 방사형 기저함수 신경회로망을 이용한 수도권 여름철 초단기 강수예측 패턴 설계)

  • Kim, Hyun-Ki;Choi, Woo-Yong;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.533-538
    • /
    • 2013
  • The damage caused by Recent frequently occurring locality torrential rains is increasing rapidly. In case of densely populated metropolitan area, casualties and property damage is a serious due to landslides and debris flows and floods. Therefore, the importance of predictions about the torrential is increasing. Precipitation characteristic of the bad weather in Korea is divided into typhoons and torrential rains. This seems to vary depending on the duration and area. Rainfall is difficult to predict because regional precipitation is large volatility and nonlinear. In this paper, Very short-term precipitation forecasting pattern model is implemented using KLAPS data used by Korea Meteorological Administration. we designed very short term precipitation forecasting pattern model using GA-based RBFNNs. the structural and parametric values such as the number of Inputs, polynomial type,number of fcm cluster, and fuzzification coefficient are optimized by GA optimization algorithm.

Design of pRBFNNs Pattern Classifier-based Face Recognition System Using 2-Directional 2-Dimensional PCA Algorithm ((2D)2PCA 알고리즘을 이용한 pRBFNNs 패턴분류기 기반 얼굴인식 시스템 설계)

  • Oh, Sung-Kwun;Jin, Yong-Tak
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.195-201
    • /
    • 2014
  • In this study, face recognition system was designed based on polynomial Radial Basis Function Neural Networks(pRBFNNs) pattern classifier using 2-directional 2-dimensional principal component analysis algorithm. Existing one dimensional PCA leads to the reduction of dimension of image expressed by the multiplication of rows and columns. However $(2D)^2PCA$(2-Directional 2-Dimensional Principal Components Analysis) is conducted to reduce dimension to each row and column of image. and then the proposed intelligent pattern classifier evaluates performance using reduced images. The proposed pRBFNNs consist of three functional modules such as the condition part, the conclusion part, and the inference part. In the condition part of fuzzy rules, input space is partitioned with the aid of fuzzy c-means clustering. In the conclusion part of rules. the connection weight of RBFNNs is represented as the linear type of polynomial. The essential design parameters (including the number of inputs and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. Using Yale and AT&T dataset widely used in face recognition, the recognition rate is obtained and evaluated. Additionally IC&CI Lab dataset is experimented with for performance evaluation.

Dynamic Modeling and Performance Improvement of a Unicycle Robot (외바퀴 로봇 다이나믹 모델과 성능 개선)

  • Kim, Sung-Ha;Lee, Jae-Oh;Hwang, Jong-Myung;Ahn, Bu-Hwan;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.11
    • /
    • pp.1074-1081
    • /
    • 2010
  • Today, the research related to the robot is achieved in various part. With the high interest in means of transport, various researches about autonomous mobile robot and next generation transport is continuing. The unicycle robot among these needs much control technique like balance control model and driving model. For autonomous driving of this unicycle robot, from the basic balance control to direction switching control and velocity control are needed. But the environment elements like a gradient and frictional force or unbalanced elements from the structural feature. The unicycle needs the real time balance control so more complex, harder to control. And when functional addition is made, the problem that fall entire reaction velocity or accuracy would be happen. This paper introduces entire dynamics modeling of the unicycle robot and reduced model. And propose the new balance control algorithm using fuzzy controller. Also the evaluation about performance would be made through the test.

The Effect of the Number of Phoneme Clusters on Speech Recognition (음성 인식에서 음소 클러스터 수의 효과)

  • Lee, Chang-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.11
    • /
    • pp.1221-1226
    • /
    • 2014
  • In an effort to improve the efficiency of the speech recognition, we investigate the effect of the number of phoneme clusters. For this purpose, codebooks of varied number of phoneme clusters are prepared by modified k-means clustering algorithm. The subsequent processing is fuzzy vector quantization (FVQ) and hidden Markov model (HMM) for speech recognition test. The result shows that there are two distinct regimes. For large number of phoneme clusters, the recognition performance is roughly independent of it. For small number of phoneme clusters, however, the recognition error rate increases nonlinearly as it is decreased. From numerical calculation, it is found that this nonlinear regime might be modeled by a power law function. The result also shows that about 166 phoneme clusters would be the optimal number for recognition of 300 isolated words. This amounts to roughly 3 variations per phoneme.

Design of RBFNN-based Emotional Lighting System Using RGBW LED (RGBW LED 이용한 RBFNN 기반 감성조명 시스템 설계)

  • Lim, Sung-Joon;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.696-704
    • /
    • 2013
  • In this paper, we introduce the LED emotional lighting system realized with the aid of both intelligent algorithm and RGB LED combined with White LED. Generally, the illumination is known as a design factor to form the living place that affects human's emotion and action in the light- space as well as the purpose to light up the specific space. The LED emotional lighting system that can express emotional atmosphere as well as control the quantity of light is designed by using both RGB LED to form the emotional mood and W LED to get sufficient amount of light. RBFNNs is used as the intelligent algorithm and the network model designed with the aid of LED control parameters (viz. color coordinates (x and y) related to color temperature, and lux as inputs, RGBW current as output) plays an important role to build up the LED emotional lighting system for obtaining appropriate color space. Unlike conventional RBFNNs, Fuzzy C-Means(FCM) clustering method is used to obtain the fitness values of the receptive function, and the connection weights of the consequence part of networks are expressed by polynomial functions. Also, the parameters of RBFNN model are optimized by using PSO(Particle Swarm Optimization). The proposed LED emotional lighting can save the energy by using the LED light source and improve the ability to work as well as to learn by making an adequate mood under diverse surrounding conditions.

Design of Black Plastics Classifier Using Data Information (데이터 정보를 이용한 흑색 플라스틱 분류기 설계)

  • Park, Sang-Beom;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.569-577
    • /
    • 2018
  • In this paper, with the aid of information which is included within data, preprocessing algorithm-based black plastic classifier is designed. The slope and area of spectrum obtained by using laser induced breakdown spectroscopy(LIBS) are analyzed for each material and its ensuing information is applied as the input data of the proposed classifier. The slope is represented by the rate of change of wavelength and intensity. Also, the area is calculated by the wavelength of the spectrum peak where the material property of chemical elements such as carbon and hydrogen appears. Using informations such as slope and area, input data of the proposed classifier is constructed. In the preprocessing part of the classifier, Principal Component Analysis(PCA) and fuzzy transform are used for dimensional reduction from high dimensional input variables to low dimensional input variables. Characteristic analysis of the materials as well as the processing speed of the classifier is improved. In the condition part, FCM clustering is applied and linear function is used as connection weight in the conclusion part. By means of Particle Swarm Optimization(PSO), parameters such as the number of clusters, fuzzification coefficient and the number of input variables are optimized. To demonstrate the superiority of classification performance, classification rate is compared by using WEKA 3.8 data mining software which contains various classifiers such as Naivebayes, SVM and Multilayer perceptron.