• Title/Summary/Keyword: Fuzzy inference systems

Search Result 587, Processing Time 0.021 seconds

Z. Cao's Fuzzy Reasoning Method using Learning Ability (학습기능을 이용한 Z. Cao의 퍼지추론방식)

  • Park, Jin-Hyun;Lee, Tae-Hwan;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.9
    • /
    • pp.1591-1598
    • /
    • 2008
  • Z. Cao had proposed NFRM(new fuzzy reasoning method) which infers in detail using relation matrix. In spite of the small inference rules, it shows good performance than mamdani's fuzzy inference method. In this paper, we propose Z. Cao's fuzzy inference method with learning ability which is used a gradient descent method in order to improve the performances. It is hard to determine the relation matrix elements by trial and error method. Because this method is needed many hours and effort. Simulation results are applied nonlinear systems show that the proposed inference method using a gradient descent method has good performances.

A Study on the Adaptive Polynomial Neuro-Fuzzy Networks Architecture (적응 다항식 뉴로-퍼지 네트워크 구조에 관한 연구)

  • Oh, Sung-Kwun;Kim, Dong-Won
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.9
    • /
    • pp.430-438
    • /
    • 2001
  • In this study, we introduce the adaptive Polynomial Neuro-Fuzzy Networks(PNFN) architecture generated from the fusion of fuzzy inference system and PNN algorithm. The PNFN dwells on the ideas of fuzzy rule-based computing and neural networks. Fuzzy inference system is applied in the 1st layer of PNFN and PNN algorithm is employed in the 2nd layer or higher. From these the multilayer structure of the PNFN is constructed. In order words, in the Fuzzy Inference System(FIS) used in the nodes of the 1st layer of PNFN, either the simplified or regression polynomial inference method is utilized. And as the premise part of the rules, both triangular and Gaussian like membership function are studied. In the 2nd layer or higher, PNN based on GMDH and regression polynomial is generated in a dynamic way, unlike in the case of the popular multilayer perceptron structure. That is, the PNN is an analytic technique for identifying nonlinear relationships between system's inputs and outputs and is a flexible network structure constructed through the successive generation of layers from nodes represented in partial descriptions of I/O relatio of data. The experiment part of the study involves representative time series such as Box-Jenkins gas furnace data used across various neurofuzzy systems and a comparative analysis is included as well.

  • PDF

A Nutrition Evaluation System Based on Hierarchical Fuzzy Approach

  • Son, Chang-S.;Jeong, Gu-Beom
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.87-93
    • /
    • 2008
  • In this paper, we propose a hierarchical fuzzy based nutrition evaluation system that can analyze the individuals' nutrition status through the inference results generated by each layer. Moreover, a method to minimize the uncertainty of inference in the evaluated nutrition status is discussed. To show the effect of the uncertainty in fuzzy inference, we compared the results of nutrition evaluation with/without the certainty factor of rules on 132 people over the age of 65. From the experimental results, we can see that the evaluation method with the modified certainty factor provides better reliability than that of the general evaluation method without the certainty factor.

Implement of Fuzzy Inference Hardware for Servo Control Using $\alpha$ -level Set Decomposition ($\alpha$-레벨집합 분해에 의한 서보제어용 퍼지추론 하드웨어의 구현)

  • Hong Soon-ill;Lee Yo-seob;Choi Jae-yong
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.662-665
    • /
    • 2001
  • As the fuzzy control is applied to servo system the hardware implementation of the fuzzy information systems requires the high speed operations, short real time control and the small size systems. The aims of this study is to develop hardware of the fuzzy information systems to be apply to servo system. In this paper, we propose a calculation method of approximate reasoning for fuzzy control based on $\alpha$-level set decomposition of fuzzy sets by quantize $\alpha$-cuts. This method can be easily implemented with analog hardware. The influence of quantization levels of $\alpha$-cuts on output from fuzzy inference engine is investigated. It is concluded that 4 quantization levels give sufficient result for fuzzy control performance of do servo system. It examined useful with experiment for dc servo system.

  • PDF

A Multi-Resolution Radial Basis Function Network for Self-Organization, Defuzzification, and Inference in Fuzzy Rule-Based Systems

  • Lee, Suk-Han
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10a
    • /
    • pp.124-140
    • /
    • 1995
  • The merit of fuzzy rule based systems stems from their capability of encoding qualitative knowledge of experts into quantitative rules. Recent advancement in automatic tuning or self-organization of fuzzy rules from experimental data further enhances their power, allowing the integration of the top-down encoding of knowledge with the bottom-up learning of rules. In this paper, methods of self-organizing fuzzy rules and of performing defuzzification and inference is presented based on a multi-resolution radial basis function network. The network learns an arbitrary input-output mapping from sample distribution as the union of hyper-ellipsoidal clusters of various locations, sizes and shapes. The hyper-ellipsoidal clusters, representing fuzzy rules, are self-organized based of global competition in such a way as to ensute uniform mapping errors. The cooperative interpolation among the multiple clusters associated with a mapping allows the network to perform a bidirectional many-to-many mapping, representing a particular from of defuzzification. Finally, an inference engine is constructed for the network to search for an optimal chain of rules or situation transitions under the constraint of transition feasibilities imposed by the learned mapping. Applications of the proposed network to skill acquisition are shown.

  • PDF

Neuro-fuzzy based prediction of the durability of self-consolidating concrete to various sodium sulfate exposure regimes

  • Bassuoni, M.T.;Nehdi, M.L.
    • Computers and Concrete
    • /
    • v.5 no.6
    • /
    • pp.573-597
    • /
    • 2008
  • Among artificial intelligence-based computational techniques, adaptive neuro-fuzzy inference systems (ANFIS) are particularly suitable for modelling complex systems with known input-output data sets. Such systems can be efficient in modelling non-linear, complex and ambiguous behaviour of cement-based materials undergoing single, dual or multiple damage factors of different forms (chemical, physical and structural). Due to the well-known complexity of sulfate attack on cement-based materials, the current work investigates the use of ANFIS to model the behaviour of a wide range of self-consolidating concrete (SCC) mixture designs under various high-concentration sodium sulfate exposure regimes including full immersion, wetting-drying, partial immersion, freezing-thawing, and cyclic cold-hot conditions with or without sustained flexural loading. Three ANFIS models have been developed to predict the expansion, reduction in elastic dynamic modulus, and starting time of failure of the tested SCC specimens under the various high-concentration sodium sulfate exposure regimes. A fuzzy inference system was also developed to predict the level of aggression of environmental conditions associated with very severe sodium sulfate attack based on temperature, relative humidity and degree of wetting-drying. The results show that predictions of the ANFIS and fuzzy inference systems were rational and accurate, with errors not exceeding 5%. Sensitivity analyses showed that the trends of results given by the models had good agreement with actual experimental results and with thermal, mineralogical and micro-analytical studies.

Identification of Fuzzy Inference Systems Using a Multi-objective Space Search Algorithm and Information Granulation

  • Huang, Wei;Oh, Sung-Kwun;Ding, Lixin;Kim, Hyun-Ki;Joo, Su-Chong
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.853-866
    • /
    • 2011
  • We propose a multi-objective space search algorithm (MSSA) and introduce the identification of fuzzy inference systems based on the MSSA and information granulation (IG). The MSSA is a multi-objective optimization algorithm whose search method is associated with the analysis of the solution space. The multi-objective mechanism of MSSA is realized using a non-dominated sorting-based multi-objective strategy. In the identification of the fuzzy inference system, the MSSA is exploited to carry out parametric optimization of the fuzzy model and to achieve its structural optimization. The granulation of information is attained using the C-Means clustering algorithm. The overall optimization of fuzzy inference systems comes in the form of two identification mechanisms: structure identification (such as the number of input variables to be used, a specific subset of input variables, the number of membership functions, and the polynomial type) and parameter identification (viz. the apexes of membership function). The structure identification is developed by the MSSA and C-Means, whereas the parameter identification is realized via the MSSA and least squares method. The evaluation of the performance of the proposed model was conducted using three representative numerical examples such as gas furnace, NOx emission process data, and Mackey-Glass time series. The proposed model was also compared with the quality of some "conventional" fuzzy models encountered in the literature.

A Nutrition Status Analysis System Based on Hierarchical Fuzzy Inference Approach (계층적인 퍼지추론 기법을 기반으로 한 영양상태 분석시스템)

  • Son, Chang-S.;Jeong, Gu-Beom
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.6
    • /
    • pp.731-737
    • /
    • 2007
  • In this paper, we propose a system for analyzing nutrition status based on hierarchical fuzzy inference approach, where the hierarchical fuzzy approach used to analyze the transition process on the nutritional status from an obesity degree, the previous nutritional status, and the eating pattern with an individual. Moreover we discussed about the selection method of fuzzy membership intervals of the next layer to improve the reliability of inference results in hierarchical fuzzy system, where their intervals are modified by using statistical information of the defuzzified results obtained from the previous layer. To show the effectiveness of this system, we evaluated the nutritional status from the information of anthropometric measurement, biochemical test, and INQ on 113 people over the age of 65, and also analyzed their nutritional status.

Fuzzy Colored Timed Petri Nets for Context Inference (상황 추론을 위한 Fuzzy Colored Timed Petri Net)

  • Lee Keon-Myung;Lee Kyung-Mi;Hwang Kyung-Soon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.291-296
    • /
    • 2006
  • In context-aware computing environment, some context is characterized by a single event, but many other contexts are determined by a sequence of events which happen with some timing constraints. Therefore context inference could be conducted by monitoring the sequence of event occurrence along with checking their conformance with timing constraints. Some context could be described with fuzzy concepts instead of concrete concepts. Multiple entities may interact with a service system in the context-aware environments, and thus the context inference mechanism should be equipped to handle multiple entities in the same situation. This paper proposes a context inference model which is based on the so-called fuzzy colored timed Petri net. The model represents and handles the sequential occurrence of some events along with involving timing constraints, deals with the multiple entities using the colored Petri net model, and employs the concept of fuzzy tokens to manage the fuzzy concepts.

Application of genetic algorithm to hybrid fuzzy inference engine (유전 알고리즘에 의한 Hybrid 퍼지 추론기의 구성)

  • 박세희;조현찬;이홍기;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.863-868
    • /
    • 1992
  • This paper presents a method on applying Genetic Algorithm(GA), which is a well-known high performance optimizing algorithm, to construct the self-organizing fuzzy logic controller. Fuzzy logic controller considered in this paper utilizes Sugeno's hybrid inference method, which has an advantage of simple defuzzification process in the inference engine. Genetic algorithm is used to find the optimal parameters in the FLC. The proposed approach will be demonstrated using 2 d.o.f robot manipulator to verify its effectiveness.

  • PDF