• Title/Summary/Keyword: Fuzzy extractor

Search Result 12, Processing Time 0.016 seconds

An Enhanced Scheme of PUF-Assisted Group Key Distribution in SDWSN (SDWSN 환경의 PUF 기반 그룹 키 분배 방법 개선)

  • Oh, Jeong Min;Jeong, Ik Rae;Byun, Jin Wook
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.1
    • /
    • pp.29-43
    • /
    • 2019
  • In recent years, as the network traffic in the WSN(Wireless Sensor Network) has been increased by the growing number of IoT wireless devices, SDWSN(Software-Defined Wireless Sensor Network) and its security that aims a secure SDN(Software-Defined Networking) for efficiently managing network resources in WSN have received much attention. In this paper, we study on how to efficiently and securely design a PUF(Physical Unclonable Function)-assisted group key distribution scheme for the SDWSN environment. Recently, Huang et al. have designed a group key distribution scheme using the strengths of SDN and the physical security features of PUF. However, we observe that Huang et al.'s scheme has weak points that it does not only lack of authentication for the auxiliary controller but also it maintains the redundant synchronization information. In this paper, we securely design an authentication process of the auxiliary controller and improve the vulnerabilities of Huang et al.'s scheme by adding counter strings and random information but deleting the redundant synchronization information.

An Efficient and Secure Authentication Scheme with Session Key Negotiation for Timely Application of WSNs

  • Jiping Li;Yuanyuan Zhang;Lixiang Shen;Jing Cao;Wenwu Xie;Yi Zheng;Shouyin Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.801-825
    • /
    • 2024
  • For Internet of Things, it is more preferred to have immediate access to environment information from sensor nodes (SNs) rather than from gateway nodes (GWNs). To fulfill the goal, mutual authentication scheme between user and SNs with session key (SK) negotiation is more suitable. However, this is a challenging task due to the constrained power, computation, communication and storage resources of SNs. Though lots of authentication schemes with SK negotiation have been designed to deal with it, they are still insufficiently secure and/or efficient, and some even have serious vulnerabilities. Therefore, we design an efficient secure authentication scheme with session key negotiation (eSAS2KN) for wireless sensor networks (WSNs) utilizing fuzzy extractor technique, hash function and bitwise exclusive-or lightweight operations. In the eSAS2KN, user and SNs are mutually authenticated with anonymity, and an SK is negotiated for their direct and instant communications subsequently. To prove the security of eSAS2KN, we give detailed informal security analysis, carry out logical verification by applying BAN logic, present formal security proof by employing Real-Or-Random (ROR) model, and implement formal security verification by using AVISPA tool. Finally, computation and communication costs comparison show the eSAS2kN is more efficient and secure for practical application.