• Title/Summary/Keyword: Fuzzy evaluation

Search Result 763, Processing Time 0.022 seconds

퍼지신경망에 의한 퍼지회귀분석 : 품질평가 문제에의 응용

  • 권기택
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1996.10a
    • /
    • pp.211-216
    • /
    • 1996
  • This paper propose a fuzzy regression method using fuzzy neural networks when a membership value is attached to each input-output pair. First, an architecture of fuzzy nerual networks with fuzzy weights and fuzzy biases is shown. Next a cost function is defined using the fuzzy output from the fuzzy neural network and the corresponding target output with a membership value.A learning algorithm is derived from the cost function. The derived learning algorithm trains the fuzzy neural network so that the level set of the fuzzy output includes the target output. Last, the proposed method is applied to the quality evaluation problem of injection molding.

Fuzzy Analytic Hierarchy Process for the Evaluation of Old Dwelling Façade Design Factor

  • Park, Jin-A
    • Science of Emotion and Sensibility
    • /
    • v.16 no.3
    • /
    • pp.333-340
    • /
    • 2013
  • The purpose of this paper is to evaluate facade design factors of old dwellings using a Fuzzy Analytical Hierarchy Process (AHP) based on a pairwise comparison analysis using "Façade Design Factors" as evaluation criteria. Traditional old dwellings were presented and evaluated. A Fuzzy AHP based model was used for pairwise comparison of traditional old dwellings, whereby seven criteria and nine alternatives were described through a questionnaire and constructional data. The Fuzzy AHP was used to determine the impact of the facade design factors, because "Traditional" old dwellings are identified by the combination of their facade design factors. Furthermore, the fuzzy AHP is used to verify the feasibility and efficiency of this approach as well as for extent analysis to comprehend the priority of the traditional old dwellings using a sensibility measuring scale.

  • PDF

Evaluation of Risk Level for Damage of Marine Accidents in SRRs using Fuzzy AHP (퍼지AHP법을 이용한 해양사고 피해규모에 의한 수색$\cdot$구조 구역의 위험수준 평가에 관한 연구)

  • Jang Woon-Jae;Keum Jong-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.11 no.2 s.23
    • /
    • pp.27-32
    • /
    • 2005
  • This paper suggests an evaluation of risk level for damage of marine accidents in SRRs. This paper intoduces a concept of fuzzy logic with the plenty of related literature riview, fuzzy measure t-seminormed fuzzy integral and in the Korean SRRs of RCC and RSC. The methodology of this paper is max. min composition of fuzzy extensive principle, defuzzifiation is centroid of gravity methods. And final evaluation value using t-seminormed fuzzy integral. At the result, the evaluation of risk level is especially over serious for marine accident of Mokpo, Tongyoung, Yeosu SRRs.. This paper recommends that many rescue vessels and equipments need to the reduction of risk level about those.

  • PDF

The descriptive grade evaluation system using Fuzzy reasoning on web (웹 상에서의 퍼지추론을 이용한 서술식 평가 시스템)

  • Sa-Kong, Kul;Kim, Doo-Ywan;Chung, Hwan-Mook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.31-36
    • /
    • 2003
  • The descriptive grade evaluation system is adopting to solve the problems of pre-exiting system that refers to marks and ranks. However, it increases the work load and creates inconsistencies of the grade evaluations due to teachers subjective evaluations. In this Paper, I suggest a grade evaluation system, applying the Fuzzy reasoning on web for teachers to evaluate students more effectively. Teachers can input the results of the accomplishment assessments. It also evaluates with the Fuzzy reasoning to attain the final evaluation of the subjects. The system also creates descriptive evaluation sentences by abstracting some sentences for evaluation utilizing the properties of the Fuzzy reasoning rules.

A Safety Evaluation Method for a Product Design Planning Stage: Application of AHP and Fuzzy (AHP 및 Fuzzy를 이용한 제품기획단계에서의 안전성 평가)

  • Park, Ji-Young;Cho, Am
    • Journal of the Ergonomics Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.15-24
    • /
    • 2008
  • As users increasingly recognize the importance of safety and the Product Liability comes into effect, a company should take responsibility of protecting the users who use its product. In order to produce a safe product and satisfy the needs of users, it is critical for develope opriately and understand the characteristics of the product accurately. Furthermore, a safe product can be realized by considering a safety level of the product in a whole product development process. However, in general, product development projects hardly evaluate the safety of a product in the product planning step. In addition, most of safety evaluation methods which are applied in the product planning step have a tendency to be qualitative because a detailed product design step. Therefore, this research aims at enhancing the performance of the safety evaluation process by applying quantitative methods such as 'AHP' and 'Fuzzy'. AHP can help analysts derive the weight of safety factors. Fuzzy is applied to evaluate the degree of safety of product elements in this paper. The proposed method will be able to improve the safety level of a product by using the quantitative methods in the product planning step.

Evaluation of the Performance and Reliability of a Real-time Power System Described by a DES Model using Fuzzy-Random Variables (퍼지-랜덤 변수를 이용한 DES 모델링을 통한 실시간 전력 시스템의 성능 및 신뢰도 평가)

  • Min, Byeong-Jo;Lee, Seok-Ju;Kim, Hak-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.7
    • /
    • pp.363-369
    • /
    • 2000
  • To flexibly evaluate performance and reliability of an electric power system in the aspect of the real-time system which is intrinsically characterized by stringent timing constraints fails catastrophically if its control input is not updated by its digital controller computer within a certain time limit called the hard deadline, we propose fuzzy-random variables and build a discrete event model embedded with fuzzy-random variables. Also, we adapt fuzzy-variables to a path-space approach, which derives the upper and lower bounds of reliability by using a semi-Markov model that explicitly contains the deadline information. Consequently, we propose certain formulas of state automata properly transformed by fuzzy-random variables, and present numerical examples applying the formulas as well.

  • PDF

Modeling for Evaluating the Comfort Sensibility using Fuzzy-Weighted Score (Fuzzy-Weighted Score를 이용한 쾌적감성 평가모형)

  • Jeon, Yong-Woong;Cho, Am
    • IE interfaces
    • /
    • v.18 no.2
    • /
    • pp.158-166
    • /
    • 2005
  • Human-error and mental stress caused by psychophysiological dissonance between people and artificial environments have become a social problem. And it is a common knowledge that comfort environment reduces human-error and mental stress. Comfort sensibility is related to complex interactions between fabric, climatic, physiological and psychological variables. Currently, comfort sensibility has been evaluated by many sensory tests. However, it is difficult to evaluate comfort sensibility because a concrete concept of comfort sensibility is hard to define. In this paper, we propose a model to evaluate the comfort sensibility using Fuzzy-weighted score on an individual's subjective state for the stimulus. To represent the degree of comfort sensibility level for the stimulus, we represent comfort sensibility using 2 dimensional sensibility vector model. And we use the fuzzy-weighted score that is a fuzzy version of the weighted checklist technique computerized for evaluating the subjects. As an example, this model is applied to 1/f fluctuation sound evaluation. The results show that this model can be effectively used to the quantitative evaluation of comfort sensibility for the stimulus.

Fuzzy KANO Model: Fuzzy Set-Based Classification of Customer Requirements (Kano 모형에 기반한 소비자 요구사항 분류: 퍼지 접근방법)

  • 임정훈;민대기;김광재
    • Journal of Korean Society for Quality Management
    • /
    • v.31 no.3
    • /
    • pp.98-113
    • /
    • 2003
  • Kano model distinguishes three types of customer requirements, namely, one-dimensional quality, must-be quality, and attractive quality. There are a few methods for classifying a given customer requirement into one of the Kano's quality elements. However, the existing methods have a common limitation in that they are based on Kano evaluation table. Kano evaluation table is not always effective for the classification task, and suffers from a significant information loss. This paper proposes an alternative to Kano's evaluation table and a new classification scheme based on fuzzy set concept. The proposed method is illustrated using a case study on the ADSL service.

Evaluation of Risk Level for Damage of Marine Accidents in SRRs using Fuzzy Theory (해양사고 피해규모에 의한 위험수준 평가)

  • 장운재;금종수
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.145-150
    • /
    • 2004
  • This paper suggests an evaluation of risk level for damage of marine accidents in SRRs. Qualitative analyses in words is sometimes priorior to quantative analyses in numeric symbols. This paper intoduces a concept of fuzzy theory with the plenty of related literature riview and AHP in the Korean SRRs of RCC and RSC. The methodology of this paper is maxㆍmin composition of fuzzy extensive principle, defuzzifiation is centroid of gravity methods. At the result, the evaluation of risk level is especially over Serous for smarine accident of Taean, Gunsan, Mokpo, Yosu, Tongyoung, Busan SRR. This paper recommends that many Resale Vessels and Equipments need to the reduction of risk level about those.

  • PDF

Evaluation of Human Interface using Fuzzy Measures and Fuzzy Integrals (퍼지척도 퍼지적분을 이용한 휴면 인터페이스의 평가)

  • 손영선
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.31-36
    • /
    • 1998
  • This paper proposes a method to select essential elements in a human evaluation model using the Choquet integral based on fuzzy measures and applies the model to the evaluation of human interface. Three kinds of concepts, Increment Degree, average of Increment Degree, Necessity coefficient, are defined. The proposed method selects essential elements by the use of the Relative necessity coefficient. The proposed method is applied to the analysis of human interface. In the experiment, (1) a warning sound, (2)a color vision, (3) the size of working area, (4) a response of confirmation, are considered as human interface elements. subjects answer the questionnarie after the experiment. From the data of questionnaire, fuzzy measures are identified and are applied to the proposed model. effectiveness of the proposed model is confirmed by the comparison of human interface elements extracted from the proposed model and those from the questionnarie.

  • PDF