• Title/Summary/Keyword: Fuzzy computing

Search Result 293, Processing Time 0.025 seconds

Real-Time Digital Fuzzy Control Systems considering Computing Time-Delay

  • Park, Chang-Woo;Shin, Hyun-Seok;Park, Mig-Non
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.5
    • /
    • pp.423-431
    • /
    • 2000
  • In this paper, the effect of computing time-delay in the real-time digital fuzzy control systems is investigated and the design methodology of a real-time digital fuzzy controller(DFC) to overcome the problems caused by it is presented. We propose the fuzzy feedback controller whose output is delayed with unit sampling period. The analysis and the design problem considering computing time-delay is very easy because the proposed controller is syncronized with the sampling time. The stabilization problem of the digital fuzzy control system is solved by the linear matrix inequality(LMI) theory. Convex optimization techniques are utilized to find the stable feedback gains and a common positive definite matrix P for the designed fuzzy control system Furthermore, we develop a real-time fuzzy control system for backing up a computer-simulated truck-trailer with the consideration of the computing time-delay. By using the proposed method, we design a DFC which guarantees the stability of the real time digital fuzzy control system in the presence of computing time-delay.

  • PDF

Applications of Soft Computing Techniques in Response Surface Based Approximate Optimization

  • Lee, Jongsoo;Kim, Seungjin
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.8
    • /
    • pp.1132-1142
    • /
    • 2001
  • The paper describes the construction of global function approximation models for use in design optimization via global search techniques such as genetic algorithms. Two different approximation methods referred to as evolutionary fuzzy modeling (EFM) and neuro-fuzzy modeling (NFM) are implemented in the context of global approximate optimization. EFM and NFM are based on soft computing paradigms utilizing fuzzy systems, neural networks and evolutionary computing techniques. Such approximation methods may have their promising characteristics in a case where the training data is not sufficiently provided or uncertain information may be included in design process. Fuzzy inference system is the central system for of identifying the input/output relationship in both methods. The paper introduces the general procedures including fuzzy rule generation, membership function selection and inference process for EFM and NFM, and presents their generalization capabilities in terms of a number of fuzzy rules and training data with application to a three-bar truss optimization.

  • PDF

Relative priority evaluation of security attributes in cloud computing using fuzzy AHP (Fuzzy AHP를 적용한 클라우드 컴퓨팅 환경에서 보안 속성의 상대적 중요도 평가)

  • Choi, Cheol-Rim;Song, Young-Jae
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.1098-1103
    • /
    • 2011
  • In spite of many advantages of cloud computing, security concerns are a barrier in users' adopting the cloud service. In this paper, we evaluate relative priorities between security attributes of ISO 7498-2 standards affecting overall security quality in cloud computing. For an objective evaluation, the fuzzy AHP(Analytic hierarchical process) is applied. The evaluation results represented the relative priority with concrete number can be an effective management method to choose and develop the cloud computing service.

Fuzzy Inference of Large Volumes in Parallel Computing Environment (병렬컴퓨팅 환경에서의 대용량 퍼지 추론)

  • 김진일;박찬량;이동철;이상구
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.13-16
    • /
    • 2000
  • In fuzzy expert systems or database systems that have huge volumes of fuzzy data or large fuzzy rules, the inference time is much increased. Therefore, a high performance parallel fuzzy computing environment is needed. In this paper, we propose a parallel fuzzy inference mechanism in parallel computing environment. In this, fuzzy rules are distributed and executed simultaneously. The ONE_TO_ALL algorithm is used to broadcast the fuzzy input vector to the all nodes. The results of the MIN/MAX operations are transferred to the output processor by the ALL_TO_ONE algorithm. By parallel processing of fuzzy rules or data, the parallel fuzzy inference algorithm extracts effective parallel ism and achieves a good speed factor.

  • PDF

Utilizing Soft Computing Techniques in Global Approximate Optimization (전역근사최적화를 위한 소프트컴퓨팅기술의 활용)

  • 이종수;장민성;김승진;김도영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.449-457
    • /
    • 2000
  • The paper describes the study of global approximate optimization utilizing soft computing techniques such as genetic algorithms (GA's), neural networks (NN's), and fuzzy inference systems(FIS). GA's provide the increasing probability of locating a global optimum over the entire design space associated with multimodality and nonlinearity. NN's can be used as a tool for function approximations, a rapid reanalysis model for subsequent use in design optimization. FIS facilitates to handle the quantitative design information under the case where the training data samples are not sufficiently provided or uncertain information is included in design modeling. Properties of soft computing techniques affect the quality of global approximate model. Evolutionary fuzzy modeling (EFM) and adaptive neuro-fuzzy inference system (ANFIS) are briefly introduced for structural optimization problem in this context. The paper presents the success of EFM depends on how optimally the fuzzy membership parameters are selected and how fuzzy rules are generated.

  • PDF

A Novel Soft Computing Technique for the Shortcoming of the Polynomial Neural Network

  • Kim, Dongwon;Huh, Sung-Hoe;Seo, Sam-Jun;Park, Gwi-Tae
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.2
    • /
    • pp.189-200
    • /
    • 2004
  • In this paper, we introduce a new soft computing technique that dwells on the ideas of combining fuzzy rules in a fuzzy system with polynomial neural networks (PNN). The PNN is a flexible neural architecture whose structure is developed through the modeling process. Unfortunately, the PNN has a fatal drawback in that it cannot be constructed for nonlinear systems with only a small amount of input variables. To overcome this limitation in the conventional PNN, we employed one of three principal soft computing components such as a fuzzy system. As such, a space of input variables is partitioned into several subspaces by the fuzzy system and these subspaces are utilized as new input variables to the PNN architecture. The proposed soft computing technique is achieved by merging the fuzzy system and the PNN into one unified framework. As a result, we can find a workable synergistic environment and the main characteristics of the two modeling techniques are harmonized. Thus, the proposed method alleviates the problems of PNN while providing superb performance. Identification results of the three-input nonlinear static function and nonlinear system with two inputs will be demonstrated to demonstrate the performance of the proposed approach.

Fuzzy Inference of Large Volumes in Parallel Computing Environments (병렬컴퓨팅 환경에서의 대용량 퍼지 추론)

  • 김진일;이상구
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.293-298
    • /
    • 2000
  • In fuzzy expert systems or database systems that have volumes of fuzzy data or large fuzzy rules, the inference time is much increased. Therefore, a high performance parallel fuzzy computing environment is needed. In this paper, we propose a parallel fuzzy inference mechanism in parallel computing environments. In this, fuzzy rules are distributed and executed simultaneously. The ONE_TO_ALL algorithm is used to broadcast the fuzzy input input vector to the all nodes. The results of the MIN/MAX operations are transferred to the output processor by the ALL_TO_ONE algorithm. By parallel processing of fuzzy or data, the parallel fuzzy inference algortihm extracts effective and achieves and achieves a good speed factor.

  • PDF

Agent Based Information Security Framework for Hybrid Cloud Computing

  • Tariq, Muhammad Imran
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.406-434
    • /
    • 2019
  • In general, an information security approach estimates the risk, where the risk is to occur due to an unusual event, and the associated consequences for cloud organization. Information Security and Risk Management (ISRA) practices vary among cloud organizations and disciplines. There are several approaches to compare existing risk management methods for cloud organizations but their scope is limited considering stereo type criteria, rather than developing an agent based task that considers all aspects of the associated risk. It is the lack of considering all existing renowned risk management frameworks, their proper comparison, and agent techniques that motivates this research. This paper proposes Agent Based Information Security Framework for Hybrid Cloud Computing as an all-inclusive method including cloud related methods to review and compare existing different renowned methods for cloud computing risk issues and by adding new tasks from surveyed methods. The concepts of software agent and intelligent agent have been introduced that fetch/collect accurate information used in framework and to develop a decision system that facilitates the organization to take decision against threat agent on the basis of information provided by the security agents. The scope of this research primarily considers risk assessment methods that focus on assets, potential threats, vulnerabilities and their associated measures to calculate consequences. After in-depth comparison of renowned ISRA methods with ABISF, we have found that ISO/IEC 27005:2011 is the most appropriate approach among existing ISRA methods. The proposed framework was implemented using fuzzy inference system based upon fuzzy set theory, and MATLAB(R) fuzzy logic rules were used to test the framework. The fuzzy results confirm that proposed framework could be used for information security in cloud computing environment.

The Design of Fuzzy Controller by Means of Genetic Optimization and Estimation Algorithms

  • Oh, Sung-Kwun;Rho, Seok-Beom
    • KIEE International Transaction on Systems and Control
    • /
    • v.12D no.1
    • /
    • pp.17-26
    • /
    • 2002
  • In this paper, a new design methodology of the fuzzy controller is presented. The performance of the fuzzy controller is sensitive to the variety of scaling factors. The design procedure is based on evolutionary computing (more specifically, a genetic algorithm) and estimation algorithm to adjust and estimate scaling factors respectively. The tuning of the soiling factors of the fuzzy controller is essential to the entire optimization process. And then we estimate scaling factors of the fuzzy controller by means of two types of estimation algorithms such as HCM (Hard C-Means) and Neuro-Fuzzy model[7]. The validity and effectiveness of the proposed estimation algorithm for the fuzzy controller are demonstrated by the inverted pendulum system.

  • PDF

A Design of the General-Purpose Fuzzy Hardware (범용의 퍼지 하드웨어 설계)

  • ;;;Zeungnam Bien
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.7
    • /
    • pp.149-158
    • /
    • 1994
  • Recently the fuzzy control is widely used as a tool for constructing automatic control systems which can replace the manual operation of large-scale nonlinear plants. In most applications of the fuzzy control however it is hard to meet the requirement of the operation time. In some real-time control the fuzzy control scheme requires too much computing time for fuzzification inference and defuzzification. To reduce the computing time there may be two alternatives the development of a new operation algorithm and the design of high-speed fuzzy hardware. In this paper to solve the problem of reducing the fuzzy operation time we propose a new high-speed fuzzy hardware scheme which has merits of its generality and extensibility. Finally we verify the proposed fuzzy hardware.

  • PDF