• Title/Summary/Keyword: Fuzzy color

Search Result 209, Processing Time 0.029 seconds

Psychology Analysis Based on Color Information Using ART2 Algorithm and Fuzzy Inference Method (ART2 알고리즘과 퍼지 추론 기법을 이용한 색채 정보 기반 심리 분석)

  • Lee, Dae-Woo;Kim, Ji-Yeon;Kim, Kwang Baek
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.01a
    • /
    • pp.343-345
    • /
    • 2016
  • 본 논문에서는 아동이 그린 그림에 대해 ART2 알고리즘을 적용하여 색채 정보를 군집화하고, 군집화 된 색채 정보의 중심 벡터 값들을 퍼지화 한다. 퍼지화 된 색채 정보의 소속도를 퍼지 추론 규칙에 적용한 후에 비퍼지화 한다. 비퍼지화 된 결과를 적용하여 아동의 심리 상태를 분석한다. 제안된 방법을 실험하여 알슐러와 해트윅(Alschuler and Hattwick)의 색채에 따른 심리 상태와 비교한 결과, 제안된 심리 분석 방법이 알슐러와 해트윅의 색채에 따른 심리 상태 분석 결과와 거의 일치하는 것을 확인하였다.

  • PDF

Implementation of Intelligent Expert System for Color Matching (칼라 매칭을 위한 지능형 전문 시스템의 구현)

  • Jang, Kyung-Won;Lee, Jong-Seok;Ahn, Tae-Chon;Yoon, Yang-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2768-2770
    • /
    • 2001
  • 본 논문은 지능형 알고리즘과 이미지 프로세싱 방법을 결합한 새로운 방법으로 칼라 매칭 시스템에 구현한다. 칼라 매칭 시스템은 이미지 프로세싱을 이용하여 칼라의 RGB 데이터를 분석한 후 얻어진 색상정보를 가지고 사용자가 원하는 칼라는 구현하는 시스템이다. 칼라 매칭 시스템의 모델링에 이용되는 지능형 모델은 퍼지 추론과 적응 퍼지 추론 시스템(Adaptive Neuro-Fuzzy Inference System: ANFIS)이며, 최소 자승법을 기반으로 한 회귀 다항식과 비교하여 제안된 지능형 모델에 대한 성능과 실용성을 검증한 후 델파이를 이용하여 구현하였다.

  • PDF

Color Image Segmentation Using Fuzzy-based Thresholding Method (그레이레블의 퍼지정보를 적용한 칼라영상분할법)

  • Kim, Dong-Jin;Kim, Sung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2558-2560
    • /
    • 2003
  • 본 논문은 퍼지논리를 통해 얻어지는 경계값을 이용한 영상분할법에 관한 연구이다. 영상분할은 퍼지인식의 핵심기술 및 많은 응용분야에서의 전처리과정에 사용되고 있어 그 중요성이 강조되고 있는 추세이다. 본 논문의 주요 관점은 영상의 그레이레블(gary level)에 관련된 불분명한 정보들을 퍼지논리를 기반으로 하여 자동적으로 경계값을 획득하는 새로운 영상 분할법을 제안함에 있다. 본 논문에서 제안된 영상분할법은 영상의 히스토그램을 이용하여 계산된 경계값과 불분명한 정도인 퍼지정보를 영상분할에 적용한 것이다. 제안된 알고리즘은 이론 및 실험을 통하여 증명하였다.

  • PDF

Fuzzy Inference-Based Emotion Recognition of Color Image (퍼지 추론을 기반으로 한 컬러 영상에서의 감성 인식)

  • Jeong, Keun-Ho;Oh, Jae-Heung;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2100-2102
    • /
    • 2003
  • 본 논문에서는 컬러 영상을 이용하여 인간의 감성을 인식할 수 있는 방법을 제안한다. 먼저, 컬러 영상으로부터 피부색 추출방법을 이용하여 얼굴을 추출한다. 그 다음, 추출된 얼굴 영상으로부터 인간 얼굴의 특징 점(눈썹 눈, 코, 입)들을 추출하는 방법과 각 특징 점들 간의 구조적인 관계로부터 인간의 감성(기쁨, 놀람, 슬픔, 분노)을 인식하는 방법을 제안한다. 본 논문에서 제안한 방법은 퍼지 추론을 기반으로 하여 인간의 감성을 인식한다. 마지막으로 제안된 방법은 실험을 통해 그 응용 가능성을 확인한다.

  • PDF

Image Filter using Fuzzy Method on Color Image (컬러 영상에서 퍼지 기법을 이용한 영상 필터)

  • Lee, Yeong-Uk;Song, Ha-Jun;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.216-218
    • /
    • 2010
  • 본 논문에서는 기존의 퍼지 필터링 알고리즘의 문제점을 개선한 퍼지 필터링 기법을 제안한다. 제안된 퍼지 필터링 알고리즘은 컬러 영상에서 R, G, B 채널을 각각 분리한다. 분리된 각 채널에서 마스크 정보를 추출하여 채널에 대한 평균값과 중간값의 명암도를 제안된 퍼지 기법의 소속 함수에 적용하여 소속도를 구한 뒤, 추론 규칙에 적용한다. 그리고 R, G, B 각각의 소속도 값을 이용하여 잡음 가능성 여부를 판별한다. 제안된 퍼지 기법에서 소속 함수 구간은 세 개 구간으로 설정하였다. 잡음이라고 판단되는 경우에는 그 잡음 정도에 따라 중간값이나 평균값을 해당 픽셀 값으로 설정하여 잡음을 제거한다. 제안된 기법을 컬러 영상에 적용한 결과, 제안된 기법이 기존의 퍼지 필터링 기법보다 잡음 제거에 있어서 효과적인 것을 확인할 수 있었다.

  • PDF

Code Extraction of Car License Plates using Color Information and Fuzzy Binarization (컬러 정보와 퍼지 이진화를 이용한 차량 번호판의 코드 추출)

  • 김정은;엄인현;김정민;최정인;김광백
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.618-623
    • /
    • 2003
  • 본 논문에서는 RGB 컬러 정보와 퍼지 이진화를 이용하여 차량 번호판의 개별 코드를 추출하는 방법을 제안한다 제안된 방법은 비영업용 차량 영상에서 차량 번호판 영역을 추출하기 위해 녹색의 분포가 밀집되어 있는 영역을 번호판의 후보 영역으로 설정하고 번호판의 후보 영역에서 흰색의 밀집도가 높은 부분을 번호판의 영역으로 추출한다. 개별 코드 추출은 추출된 번호판 영역에서 3×3 소벨 마스크를 이용하여 잡음을 제거하고 퍼지 이진화 방법을 적용하여 번호판의 영역을 이진화 한다. 이진화된 번호판 영역을 윤곽선 따라가기 알고리즘을 적용하여 개별 코드를 추출한다. 제안된 방법의 성능을 평가하기 위하여 실제 비영업용 차량 번호판에 적용한 결과, 기존의 방법보다 번호판 영역에서 개별 코드의 추출률이 개선된 것을 확인하였다.

  • PDF

Reading Children's Mind based on Color Analysis and Space Placement using CRR and Fuzzy Logic (CRR과 퍼지 논리를 이용한 색채 분석과 공간 배치 기반 아동의 심리 분석)

  • Ahn, Ha-Jun;Moon, Da-Sol;Kim, Kwang Beak
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.551-555
    • /
    • 2019
  • 본 논문에서는 색채에 대한 아동의 심리를 분석하기 위해서 CRR(Colour Reflection Reading) 및 주조색를 이용한 심리 분석 기법을 제안한다. CRR은 이미 그려진 그림에 아동이 색을 칠하는 것으로 색이 칠해진 데이터를 바탕으로 아동의 심리 상태를 분석한다. 주조색 심리 분석 기법은 원하는 색을 선택하여 그림을 그리고, 그린 그림을 이용하여 심리를 분석한다. 따라서 본 논문에서는 퍼지 논리를 적용하여 색채에 대한 심리 분석 결과를 도출하고 그린 그림을 기반으로 공간 배치도 분석 기법을 이용하여 공간 배치도에 따른 아동의 심리 상태도 분석한다.

  • PDF

Color-Texture Image Watermarking Algorithm Based on Texture Analysis (텍스처 분석 기반 칼라 텍스처 이미지 워터마킹 알고리즘)

  • Kang, Myeongsu;Nguyen, Truc Kim Thi;Nguyen, Dinh Van;Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.4
    • /
    • pp.35-43
    • /
    • 2013
  • As texture images have become prevalent throughout a variety of industrial applications, copyright protection of these images has become important issues. For this reason, this paper proposes a color-texture image watermarking algorithm utilizing texture properties inherent in the image. The proposed algorithm selects suitable blocks to embed a watermark using the energy and homogeneity properties of the grey level co-occurrence matrices as inputs for the fuzzy c-means clustering algorithm. To embed the watermark, we first perform a discrete wavelet transform (DWT) on the selected blocks and choose one of DWT subbands. Then, we embed the watermark into discrete cosine transformed blocks with a gain factor. In this study, we also explore the effects of the DWT subbands and gain factors with respect to the imperceptibility and robustness against various watermarking attacks. Experimental results show that the proposed algorithm achieves higher peak signal-to-noise ratio values (47.66 dB to 48.04 dB) and lower M-SVD values (8.84 to 15.6) when we embedded a watermark into the HH band with a gain factor of 42, which means the proposed algorithm is good enough in terms of imperceptibility. In addition, the proposed algorithm guarantees robustness against various image processing attacks, such as noise addition, filtering, cropping, and JPEG compression yielding higher normalized correlation values (0.7193 to 1).

Copyright Protection for Fire Video Images using an Effective Watermarking Method (효과적인 워터마킹 기법을 사용한 화재 비디오 영상의 저작권 보호)

  • Nguyen, Truc;Kim, Jong-Myon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.8
    • /
    • pp.579-588
    • /
    • 2013
  • This paper proposes an effective watermarking approach for copyright protection of fire video images. The proposed watermarking approach efficiently utilizes the inherent characteristics of fire data with respect to color and texture by using a gray level co-occurrence matrix (GLCM) and fuzzy c-means (FCM) clustering. GLCM is used to generate a texture feature dataset by computing energy and homogeneity properties for each candidate fire image block. FCM is used to segment color of the fire image and to select fire texture blocks for embedding watermarks. Each selected block is then decomposed into a one-level wavelet structure with four subbands [LL, LH, HL, HH] using a discrete wavelet transform (DWT), and LH subband coefficients with a gain factor are selected for embedding watermark, where the visibility of the image does not affect. Experimental results show that the proposed watermarking approach achieves about 48 dB of high peak-signal-to-noise ratio (PSNR) and 1.6 to 2.0 of low M-singular value decomposition (M-SVD) values. In addition, the proposed approach outperforms conventional image watermarking approach in terms of normalized correlation (NC) values against several image processing attacks including noise addition, filtering, cropping, and JPEG compression.

Comparison between Possibilistic c-Means (PCM) and Artificial Neural Network (ANN) Classification Algorithms in Land use/ Land cover Classification

  • Ganbold, Ganchimeg;Chasia, Stanley
    • International Journal of Knowledge Content Development & Technology
    • /
    • v.7 no.1
    • /
    • pp.57-78
    • /
    • 2017
  • There are several statistical classification algorithms available for land use/land cover classification. However, each has a certain bias or compromise. Some methods like the parallel piped approach in supervised classification, cannot classify continuous regions within a feature. On the other hand, while unsupervised classification method takes maximum advantage of spectral variability in an image, the maximally separable clusters in spectral space may not do much for our perception of important classes in a given study area. In this research, the output of an ANN algorithm was compared with the Possibilistic c-Means an improvement of the fuzzy c-Means on both moderate resolutions Landsat8 and a high resolution Formosat 2 images. The Formosat 2 image comes with an 8m spectral resolution on the multispectral data. This multispectral image data was resampled to 10m in order to maintain a uniform ratio of 1:3 against Landsat 8 image. Six classes were chosen for analysis including: Dense forest, eucalyptus, water, grassland, wheat and riverine sand. Using a standard false color composite (FCC), the six features reflected differently in the infrared region with wheat producing the brightest pixel values. Signature collection per class was therefore easily obtained for all classifications. The output of both ANN and FCM, were analyzed separately for accuracy and an error matrix generated to assess the quality and accuracy of the classification algorithms. When you compare the results of the two methods on a per-class-basis, ANN had a crisper output compared to PCM which yielded clusters with pixels especially on the moderate resolution Landsat 8 imagery.