• Title/Summary/Keyword: Fuzzy c-regression

Search Result 18, Processing Time 0.034 seconds

A T-S Fuzzy Identification of Interior Permanent Magnet Synchronous (매입형 영구자석 동기전동기의 T-S 퍼지 모델링)

  • Wang, Fa-Guang;Kim, Min-Chan;Kim, Hyun-Woo;Park, Seung-Kyu;Yoon, Tae-Sung;Kwak, Gun-Pyoung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.391-397
    • /
    • 2011
  • Control of interior permanent magnet (IPMSM) is difficult because its nonlinearity and parameter uncertainty. In this paper, a fuzzy c-regression models clustering algorithm which is based on T-S fuzzy is used to model IPMSM with a series linear model and weight them by memberships. Lagrangian of constrained function is built for calculating clustering centers where training output data are considered. Based on these clustering centers, least square method is applied for T-S fuzzy linear model parameters. As a result, IPMSM can be modeled as T-S fuzzy model for T-S fuzzy control of them.

Optimization of Fuzzy Inference Systems Based on Data Information Granulation (데이터 정보입자 기반 퍼지 추론 시스템의 최적화)

  • 오성권;박건준;이동윤
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.6
    • /
    • pp.415-424
    • /
    • 2004
  • In this paper, we introduce and investigate a new category of rule-based fuzzy inference system based on Information Granulation(IG). The proposed rule-based fuzzy modeling implements system structure and parameter identification in the efficient form of “If..., then...” statements, and exploits the theory of system optimization and fuzzy implication rules. The form of the fuzzy rules comes with three types of fuzzy inferences: a simplified one that involves conclusions that are fixed numeric values, a linear one where the conclusion part is viewed as a linear function of inputs, and a regression polynomial one as the extended type of the linear one. By the nature of the rule-based fuzzy systems, these fuzzy models are geared toward capturing relationships between information granules. The form of the information granules themselves becomes an important design features of the fuzzy model. Information granulation with the aid of HCM(Hard C-Means) clustering algorithm hell)s determine the initial parameters of rule-based fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial function being used in the Premise and consequence Part of the fuzzy rules. And then the initial Parameters are tuned (adjusted) effectively with the aid of the improved complex method(ICM) and the standard least square method(LSM). In the sequel, the ICM and LSM lead to fine-tuning of the parameters of premise membership functions and consequent polynomial functions in the rules of fuzzy model. An aggregate objective function with a weighting factor is proposed in order to achieve a balance between performance of the fuzzy model. Numerical examples are included to evaluate the performance of the proposed model. They are also contrasted with the performance of the fuzzy models existing in the literature.

Self-Organizing Fuzzy Modeling using Creation of Clusters (클러스터 생성을 이용한 자기구성 퍼지 모델링)

  • 고택범
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.245-251
    • /
    • 2002
  • 본 논문에서는 상대적으로 큰 퍼지 엔트로피를 갖는 입력-출력 데이터 집단에 다중 회귀 분석을 적용하여 다차원 평면 클러스터를 생성하고, 이 클러스터를 새로운 퍼지 모델의 규칙으로 추가한 후 퍼지 모델 파라미터의 개략 동조와 정밀 동조를 수행하는 자기구성 퍼지 모델링을 제안한다. Weighted recursive least squared 알고리즘과 fuzzy C-regression model 클러스터링에 의해 퍼지 모델의 파라미터를 개략적으로 동조한 후 gradient descent 알고리즘에 의해 파라미터를 정밀 동조하면서 감수분열 유전 알고리즘을 이용하여 최적의 학습률을 탐색한다. 그리고 자기 구성 퍼지 모델링 기법을 이용하여 Box-Jenkins의 가스로 데이터, 다변수비선형 정적 함수의 데이터와 하수 처리 활성오니 공정의 모델링을 수행하고, 기존의 방법에 의한 모델링 결과와 비교하여 그 성능을 입증한다.

  • PDF

A Study on Heavy Rainfall Guidance Realized with the Aid of Neuro-Fuzzy and SVR Algorithm Using AWS Data (AWS자료 기반 SVR과 뉴로-퍼지 알고리즘 구현 호우주의보 가이던스 연구)

  • Kim, Hyun-Myung;Oh, Sung-Kwun;Kim, Yong-Hyuk;Lee, Yong-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.526-533
    • /
    • 2014
  • In this study, we introduce design methodology to develop a guidance for issuing heavy rainfall warning by using both RBFNNs(Radial basis function neural networks) and SVR(Support vector regression) model, and then carry out the comparative studies between two pattern classifiers. Individual classifiers are designed as architecture realized with the aid of optimization and pre-processing algorithm. Because the predictive performance of the existing heavy rainfall forecast system is commonly affected from diverse processing techniques of meteorological data, under-sampling method as the pre-processing method of input data is used, and also data discretization and feature extraction method for SVR and FCM clustering and PSO method for RBFNNs are exploited respectively. The observed data, AWS(Automatic weather wtation), supplied from KMA(korea meteorological administration), is used for training and testing of the proposed classifiers. The proposed classifiers offer the related information to issue a heavy rain warning in advance before 1 to 3 hours by using the selected meteorological data and the cumulated precipitation amount accumulated for 1 to 12 hours from AWS data. For performance evaluation of each classifier, ETS(Equitable Threat Score) method is used as standard verification method for predictive ability. Through the comparative studies of two classifiers, neuro-fuzzy method is effectively used for improved performance and to show stable predictive result of guidance to issue heavy rainfall warning.

An intelligent sensor system with reconstruction mechanism of faulty signal

  • Jung, Young-Su;Hyun, Woong-Keun;Yoon, In-Mo;Jung, Young-Kee;Kim, C.S.;Kim, Nam-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1231-1234
    • /
    • 2003
  • A sensor working in outdoor may generate some faulty signal owing to dust and high temperature. This paper describes an intelligent sensor system and controller which has a reconstruction mechanism for faulty signal. The faulty signals are dievided into two types as linear distortion and non linear distortion, respectively. The linear distorted signal is due to dust, and non linear distorted signal is due to physical breakdown of sensor or high temperature. These distorted signal have been reconstructed by the proposed method based on polynomial regression method and principal component analysis approach.. The proposed method has been applied to sun tracking system working in outdoor. For a robust and precision control of sun tracker, a fuzzy controller was also proposed. The fuzzy controller controls the tracker by using the collected sensor signal. The tolerance of the position control is within 1.5 degree. To show the validity of the developed system, some experiments in the field were illustrated.

  • PDF

Evolutionary Nonlinear Regression Based Compensation Technique for Short-range Prediction of Wind Speed using Automatic Weather Station (AWS 지점별 기상데이타를 이용한 진화적 회귀분석 기반의 단기 풍속 예보 보정 기법)

  • Hyeon, Byeongyong;Lee, Yonghee;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.107-112
    • /
    • 2015
  • This paper introduces an evolutionary nonlinear regression based compensation technique for the short-range prediction of wind speed using AWS(Automatic Weather Station) data. Development of an efficient MOS(Model Output Statistics) is necessary to correct systematic errors of the model, but a linear regression based MOS is hard to manage an irregular nature of weather prediction. In order to solve the problem, a nonlinear and symbolic regression method using GP(Genetic Programming) is suggested for a development of MOS wind forecast guidance. Also FCM(Fuzzy C-Means) clustering is adopted to mitigate bias of wind speed data. The purpose of this study is to evaluate the accuracy of the estimation by a GP based nonlinear MOS for 3 days prediction of wind speed in South Korean regions. This method is then compared to the UM model and has shown superior results. Data for 2007-2009, 2011 is used for training, and 2012 is used for testing.

River stage forecasting models using support vector regression and optimization algorithms (Support vector regression과 최적화 알고리즘을 이용한 하천수위 예측모델)

  • Seo, Youngmin;Kim, Sungwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.606-609
    • /
    • 2015
  • 본 연구에서는 support vector regression (SVR) 및 매개변수 최적화 알고리즘을 이용한 하천수위 예측모델을 구축하고 이를 실제 유역에 적용하여 모델 효율성을 평가하였다. 여기서, SVR은 하천수위를 예측하기 위한 예측모델로서 채택되었으며, 커널함수 (Kernel function)로서는 radial basis function (RBF)을 선택하였다. 최적화 알고리즘은 SVR의 최적 매개변수 (C?, cost parameter or regularization parameter; ${\gamma}$, RBF parameter; ${\epsilon}$, insensitive loss function parameter)를 탐색하기 위하여 적용되었다. 매개변수 최적화 알고리즘으로는 grid search (GS), genetic algorithm (GA), particle swarm optimization (PSO), artificial bee colony (ABC) 알고리즘을 채택하였으며, 비교분석을 통해 최적화 알고리즘의 적용성을 평가하였다. 또한 SVR과 최적화 알고리즘을 결합한 모델 (SVR-GS, SVR-GA, SVR-PSO, SVR-ABC)은 기존에 수자원 분야에서 널리 적용되어온 신경망(Artificial neural network, ANN) 및 뉴로퍼지 (Adaptive neuro-fuzzy inference system, ANFIS) 모델과 비교하였다. 그 결과, 모델 효율성 측면에서 SVR-GS, SVR-GA, SVR-PSO 및 SVR-ABC는 ANN보다 우수한 결과를 나타내었으며, ANFIS와는 비슷한 결과를 나타내었다. 또한 SVR-GA, SVR-PSO 및 SVR-ABC는 SVR-GS보다 상대적으로 우수한 결과를 나타내었으며, 모델 효율성 측면에서 SVR-PSO 및 SVR-ABC는 가장 우수한 모델 성능을 나타내었다. 따라서 본 연구에서 적용한 매개변수 최적화 알고리즘은 SVR의 매개변수를 최적화하는데 효과적임을 확인할 수 있었다. SVR과 최적화 알고리즘을 이용한 하천수위 예측모델은 기존의 ANN 및 ANFIS 모델과 더불어 하천수위 예측을 위한 효과적인 도구로 사용될 수 있을 것으로 판단된다.

  • PDF

A Hybrid QFD Framework for New Product Development

  • Tsai, Y-C;Chin, K-S;Yang, J-B
    • International Journal of Quality Innovation
    • /
    • v.3 no.2
    • /
    • pp.138-158
    • /
    • 2002
  • Nowadays, new product development (NPD) is one of the most crucial factors for business success. The manufacturing firms cannot afford the resources in the long development cycle and the costly redesigns. Good product planning is crucial to ensure the success of NPD, while the Quality Function deployment (QFD) is an effective tool to help the decision makers to determine appropriate product specifications in the product planning stage. Traditionally, in the QFD, the product specifications are determined by a rather subjective evaluation, which is based on the knowledge and experience of the decision makers. In this paper, the traditional QFD methodology is firstly reviewed. An improved Hybrid Quality Function Deployment (HQFD) [MSOfficel] then presented to tackle the shortcomings of traditional QFD methodologies in determining the engineering characteristics. A structured questionnaire to collect and analyze the customer requirements, a methodology to establish a QFD record base and effective case retrieval, and a model to more objectively determine the target values of engineering characteristics are also described.