• Title/Summary/Keyword: Fuzzy c-Means Algorithm

Search Result 287, Processing Time 0.027 seconds

Image Segmentation and Determination of the Count of Clusters using Modified Fuzzy c-Means Clustering Algorithm (변형된 FCM을 이용한 칼라영상의 영역분할과 클러스터 수 결정)

  • 윤후병;정성종;안동언;두길수
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.177-180
    • /
    • 2001
  • 영상에 존재하는 객체들을 인식하기 위해서는 먼저 영상의 영역분할이 필요하다. 통계적 모델을 이용한 영상의 영역분할은 미리서 분할하고자 하는 클러스터의 수를 결정한 후 이를 토대로 영상을 분할하게 된다. 그러나 영상마다 특성상 분할하고자 하는 클러스터 수가 다를 경우 이를 수동적으로 해주는 것은 비능률적이다. 따라서 본 논문은 영상의 영역분할에 통계적 모델에서 미리 결정해줘야 하는 클러스터의 수 문제를 자동으로 검출하고 퍼지 c-Means 글러스터링 알고리즘을 통한 영상의 영역분할 시 노이즈문제를 이웃한 픽셀들의 멤버쉽 값을 평균화합으로써 해결하는 방법을 제안하였다.

  • PDF

Design of Optimized pRBFNNs-based Night Vision Face Recognition System Using PCA Algorithm (PCA알고리즘을 이용한 최적 pRBFNNs 기반 나이트비전 얼굴인식 시스템 설계)

  • Oh, Sung-Kwun;Jang, Byoung-Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.225-231
    • /
    • 2013
  • In this study, we propose the design of optimized pRBFNNs-based night vision face recognition system using PCA algorithm. It is difficalt to obtain images using CCD camera due to low brightness under surround condition without lighting. The quality of the images distorted by low illuminance is improved by using night vision camera and histogram equalization. Ada-Boost algorithm also is used for the detection of face image between face and non-face image area. The dimension of the obtained image data is reduced to low dimension using PCA method. Also we introduce the pRBFNNs as recognition module. The proposed pRBFNNs consists of three functional modules such as the condition part, the conclusion part, and the inference part. In the condition part of fuzzy rules, input space is partitioned by using Fuzzy C-Means clustering. In the conclusion part of rules, the connection weights of pRBFNNs is represented as three kinds of polynomials such as linear, quadratic, and modified quadratic. The essential design parameters of the networks are optimized by means of Differential Evolution.

Optimization of Fuzzy Set-based Fuzzy Inference Systems Based on Evolutionary Data Granulation (진화론적 데이터 입자에 기반한 퍼지 집합 기반 퍼지 추론 시스템의 최적화)

  • Park, Keon-Jun;Lee, Bong-Yoon;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.343-345
    • /
    • 2004
  • We propose a new category of fuzzy set-based fuzzy inference systems based on data granulation related to fuzzy space division for each variables. Data granules are viewed as linked collections of objects(data, in particular) drawn together by the criteria of proximity, similarity, or functionality. Granulation of data with the aid of Hard C-Means(HCM) clustering algorithm help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polyminial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms(GAs) and the least square method. Numerical example is included to evaluate the performance of the proposed model.

  • PDF

A study on the modeling and the design of multivariable fuzzy controller for the activated sludge process (활성오니 공정의 모델링 및 다변수 퍼지 제어기 설계에 관한 연구)

  • 남의석;오성권;황희수;최진혁;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.502-506
    • /
    • 1992
  • In this study, we proposed the fuzzy modeling method and designed a model-based logic controller for Activated and Sludge Process(A.S.P.) in sewage treatment. The identification of the structure of fuzzy implications is carreid out by use of fuzzy c-means clustering algorithm. And to identify the parameters of fuzzy implications, we used the complex and the least square method. To tune the premise parameters automatically the complex method is implemented. The model-based fuzzy controller is designed by rules generated from the identified A.S.P. fuzzy model. The feasibility of the proposed approach is evaluated through the identification of the fuzzy model to describe an input-output relation of the A.S.P.. The performance of identified model-based fuzzy controller is evaluated through the computer simulations.

  • PDF

Adaptive Clustering Algorithm for Recycling Cell Formation: An Application of the Modified Fuzzy ART Neural Network

  • Park, Ji-Hyung;Seo, Kwang-Kyu
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.253-260
    • /
    • 1999
  • The recycling cell formation problem means that disposal products me classified into recycling part families using group technology in their end of life phase. Disposal products have the uncertainties of product status by usage influences during product use phase and recycling cells are formed design, process and usage attributes. In order to treat the uncertainties, fuzzy set theory and fuzzy logic-based neural network model are applied to recycling cell formation problem far disposal products. In this paper, a heuristic approach fuzzy ART neural network is suggested. The modified fuzzy ART neural network is shown that it has a great efficiency and give an extension for systematically generating alternative solutions in the recycling cell formation problem. We present the results of this approach applied to disposal refrigerators and the comparison of performances between other algorithms. This paper introduced a procedure which integrates economic and environmental factors into the disassembly of disposal products for recycling in recycling cells. A qualitative method of disassembly analysis is developed and its ai is to improve the efficiency of the disassembly and to generated an optimal disassembly which maximize profits and minimize environmental impact. Three criteria established to reduce the search space and facilitate recycling opportunities.

  • PDF

Adaptive Clustering Algorithm for Recycling Cell Formation An Application of the Modified Fuzzy ART Neural Network

  • Park, Ji-Hyung;Seo, Kwang-Kyu
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.253-260
    • /
    • 1999
  • The recycling cell formation problem means that disposal products are classified into recycling part families using group technology in their end of life phase. Disposal products have the uncertainties of product status by usage influences during product use phase and recycling cells are formed design, process and usage attributes. In order to treat the uncertainties, fuzzy set theory and fuzzy logic-based neural network model are applied to recycling cell formation problem for disposal products. In this paper, a heuristic approach for fuzzy ART neural network is suggested. The modified Fuzzy ART neural network is shown that it has a great efficiency and give an extension for systematically generating alternative solutions in the recycling cell formation problem. We present the results of this approach applied to disposal refrigerators and the comparison of performances between other algorithms. This paper introduced a procedure which integrates economic and environmental factors into the disassembly of disposal products for recycling in recycling cells. A qualitative method of disassembly analysis is developed and its aim is to improve the efficiency of the disassembly and to generated an optimal disassembly which maximize profits and minimize environmental impact. Three criteria established to reduce the search space and facilitate recycling opportunities.

  • PDF

Self-Organizing Fuzzy Polynomial Neural Networks by Means of IG-based Consecutive Optimization : Design and Analysis (정보 입자기반 연속전인 최적화를 통한 자기구성 퍼지 다항식 뉴럴네트워크 : 설계와 해석)

  • Park, Ho-Sung;Oh, Sung-Kwun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.6
    • /
    • pp.264-273
    • /
    • 2006
  • In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks (SOFPNN) by means of consecutive optimization and also discuss its comprehensive design methodology involving mechanisms of genetic optimization. The network is based on a structurally as well as parametrically optimized fuzzy polynomial neurons (FPNs) conducted with the aid of information granulation and genetic algorithms. In structurally identification of FPN, the design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics and addresses specific aspects of parametric optimization. In addition, the fuzzy rules used in the networks exploit the notion of information granules defined over system's variables and formed through the process of information granulation. That is, we determine the initial location (apexes) of membership functions and initial values of polynomial function being used in the premised and consequence part of the fuzzy rules respectively. This granulation is realized with the aid of the hard c-menas clustering method (HCM). For the parametric identification, we obtained the effective model that the axes of MFs are identified by GA to reflect characteristic of given data. Especially, the genetically dynamic search method is introduced in the identification of parameter. It helps lead to rapidly optimal convergence over a limited region or a boundary condition. To evaluate the performance of the proposed model, the model is experimented with using two time series data(gas furnace process, nonlinear system data, and NOx process data).

An Application of FCM(Fuzzy C-Means) for Clustering of Asian Ports Competitiveness Level and Status of Busan Port (FCM법을 이용한 아시아 항만의 경쟁력 수준 분류와 부산항의 위상)

  • 류형근;이홍걸;여기태
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.5
    • /
    • pp.7-18
    • /
    • 2003
  • Due to the changes of shipping and logistic environment, Asian ports today face severe competition. To be a mega-hub port, Asian ports have achieved a big scale development. For these reasons, it has been widely recognized as an important study to analyze and evaluate characteristics of Asian ports, from the standpoint of Korea where Busan Port is located. Although some previous studies have been reported, most of them have been beyond the scope of Asian ports and analyzed the world's major ports; moreover, the studied ports have been about the ports which are well known from the previous research and reports. So, most studies is unlikely to be used as substantial indicators from the perspective of Busan Port. In addition. most of the existing studies have used hierarchical evaluation algorithm for port ranking, such as AHP (analytical hierarchy process) and clustering analysis. However, these two methods have fundamental weaknesses from the algorithm perspective. The aim of this study is to classify major Asian ports based on competitiveness level. Especially. in order to overcome serious problem of the existing studies, major Asian ports were analyzed by using objective indicators. and Fuzzy C-Means algorithm, which alleviates the weakness of the clustering method. It was found that 10 ports of 16 major Asian ports have their own phases and were classified into 4 port groups. This result implies that some ports have higher potential as ports to lead some zones in Asia. Based on those results. present status and future direction of Busan port were discussed as well.

A Context-Aware Information Service using FCM Clustering Algorithm and Fuzzy Decision Tree (FCM 클러스터링 알고리즘과 퍼지 결정트리를 이용한 상황인식 정보 서비스)

  • Yang, Seokhwan;Chung, Mokdong
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.7
    • /
    • pp.810-819
    • /
    • 2013
  • FCM (Fuzzy C-Means) clustering algorithm, a typical split-based clustering algorithm, has been successfully applied to the various fields. Nonetheless, the FCM clustering algorithm has some problems, such as high sensitivity to noise and local data, the different clustering result from the intuitive grasp, and the setting of initial round and the number of clusters. To address these problems, in this paper, we determine fuzzy numbers which project the FCM clustering result on the axis with the specific attribute. And we propose a model that the fuzzy numbers apply to FDT (Fuzzy Decision Tree). This model improves the two problems of FCM clustering algorithm such as elevated sensitivity to data, and the difference of the clustering result from the intuitional decision. And also, this paper compares the effect of the proposed model and the result of FCM clustering algorithm through the experiment using real traffic and rainfall data. The experimental results indicate that the proposed model provides more reliable results by the sensitivity relief for data. And we can see that it has improved on the concordance of FCM clustering result with the intuitive expectation.

Optimal Design of Fuzzy Relation-based Fuzzy Inference Systems Based on Evolutionary Information Granulation (진화론적 정보 입자에 기반한 퍼지 관계 기반 퍼지 추론 시스템의 최적 설계)

  • Park, Keon-Jun;Kim, Hyun-Ki;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.340-342
    • /
    • 2004
  • In this paper, we introduce a new category of fuzzy inference systems baled on information granulation to carry out the model identification of complex and nonlinear systems. Informal speaking, information granules are viewed as linked collections of objects(data, in particular) drawn together by the criteria of proximity, similarity, or functionality. Granulation of information with the aid of Hard C-Means(HCM) clustering algorithm help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polyminial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms(GAs) and the least square method. The proposed model is contrasted with the performance of the conventional fuzzy models in the literature.

  • PDF