Proceedings of the Korean Society of Computer Information Conference
/
2011.01a
/
pp.37-38
/
2011
본 논문은 상대적으로 대비도 차이가 크게 나타나는 역광 이미지에 대해서 Retinex 알고리즘을 적용하여 보정 했을 경우 발생하는 밝은 영역에서의 컬러 성분의 손실을 개선하기 위한 새로운 기법을 제안한다. 역광 이미지의 경우 밝은 영역과 어두운 영역에 대한 밝기 차이가 매우 크게 발생하기 때문에 Retinex 알고리즘을 이용하여 영상의 대비도를 향상시킬 경우 밝은 영역에서의 컬러 성분이 손실되는 현상이 발생한다. 이러한 손실을 보완하기 위해서 원본 영상의 밝은 영역에 해당하는 컬러 성분을 Retinex 알고리즘으로 보정된 영상에 추가해준다. Fuzzy c-means 군집화 알고리즘을 이용하여 원본 영상에서의 밝은 영역과 어두운 영역에 대하여 모든 화소의 소속 정도를 나타내는 퍼지 소속 함수를 구한다. 밝은 영역에 대해서의 컬러 성분은 원본 영상 값에 밝은 영역 퍼지 소속 함수를 적용하고, 어두운 영역에 대해서의 컬러 성분은 Retinex 복원 영상 값에 어두운 영역 퍼지 소속 함수를 이용한다. 제안하는 알고리즘의 성능 평가를 위해 역광 현상이 강하게 나타나는 자연영상들을 대상으로 적용하여 기존의 Retinex 알고리즘(MSRCR) 보다 우수한 성능을 가지고 있음을 보였다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2003.05a
/
pp.235-238
/
2003
Fuzzy C-Means(FCM) 알고리즘은 초기 군집 중심의 개수와 위치에 따라 군집 결과의 성능차이가 많이 나타난다. 하지만 일반적인 경우에 군집 중심의 개수는 분석가의 주관에 의해 결정되고, 임의적으로 결정되기 때문에 원래 데이터의 구조와는 무관하게 수행되어 최적화된 군집화 수행을 실행하지 못하는 경우가 발생하게 된다. 따라서 본 논문에서는 원래의 데이터의 구조에 좀더 근접한 퍼지 군집화를 수행하기 위하여 격자를 바탕으로 한 데이터의 밀도를 이용한 FCM을 제안하고, 이러한 밀도 기반 FCM에 의해 결정된 군집의 합병 기법을 제안하였다. N-차원의 데이터 공간을 N-차원의 격자로 나누고, 초기 군집 중심의 개수와 위치는 각 격자의 밀도를 바탕으로 결정된다. 초기화 이후에 각 격자 내부에서 FCM을 이용하여 군집화를 수행하고, 계속해서 이웃 격자의 군집결과에 대하여 군집간의 유사도 측도를 이용하여 군집 합병을 수행함으로써 데이터의 자연적인 구조에 근접한 군집화를 수행하였다. 제안된 군집화 합병 기법의 향상된 성능은 UCI Machine Learning Repository 데이터를 이용하여 확인하였다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2006.05a
/
pp.121-124
/
2006
본 논문에서는 Bacterial Foraging Algorithm과 FCM(fuzzy c-means)클러스터링을 이용하여 TSK(Takagi-Sugeno-Kang)형태의 퍼지 규칙 생성과 퍼지 시스템(FCM-ANFIS)을 효과적으로 구축하는 방법을 제안한다. 구조동정에서는 먼저 PCA(Principal Component Analysis)을 이용하여 입력 데이터 성분간의 상관관계를 제거한 후에 FCM을 이용하여 클러스터를 생성하고 성능지표에 근거해서 타당한 클러스터의 수, 즉 퍼지 규칙의 수를 얻는다. 파라미터 동정에서는 Bacterial Foraging Algorithm을 이용하여 전제부 파라미터를 최적화 시킨다. 결론부 파라미터는 RLSE(Recursive Least Square Estimate)에 의해 추정되어진다. PCA(Principal Component Analysis)와 FCM을 적용함으로써 타당한 규칙 수를 생성하였고 Bacterial Foraging Algorithm을 이용하여 최적의 전제부 파라미터를 구하였다. 제안된 방법의 성능을 평가하기 위하여 Box-Jenkins의 가스로 데이터와 Rice taste 데이터의 모델링에 적용하였고 우수한 성능을 보임을 알 수 있었다.
Proceedings of the Safety Management and Science Conference
/
2000.05a
/
pp.111-123
/
2000
The recycling cell formation problem means that disposal products are classified into recycling part families using group technology in their end of life phase. Disposal products have the uncertainties of product status by usage influences. Recycling cells are formed considering design, process and usage attributes. In this paper, a novel approach to the design of cellular recycling system is proposed, which deals with the recycling cell formation and assignment of identical products concurrently. Fuzzy clustering algorithm and Fuzzy-ART neural network are applied to describe the states of disposal product with the membership functions and to make recycling cell formation. This approach leads to recycling and reuse of the materials, components, and subassemblies and can evaluate the value at each cell of disposal products. Application examples are illustrated by disposal refrigerators, compared fuzzy clustering with Fuzzy-ART neural network performance in cell formation.
In this paper, the scheme of fuzzy system construction using GA(genetic algorithm) and FCM(Fuzzy c-means) clustering algorithm is proposed for TSK(Takagi-Sugeno-Kang) type fuzzy system. in the structure identification, input data is trans-formed by PCA(Principal Component Analysis) to reduce the correlation among input data components. And then, the number of fuzzy rule is obtained by a given performance criterion. In the parameter identification, the premise parameters are optimally searched by GA. On the other hand, the consequent parameters are estimated by RLSE(Recursive Least Square Estimate) to reduce the search space. From this, one can systematically obtain optimal parameter and the v..
In this paper. a new fuzzy modeling algorithm is proposed : it can express a given unknown system with a small number of fuzzy rules and be easily implemented. This method uses an independent array instead of a lattice form for a premise membership function. For the purpose of getting the initial value of fuzzy rules. the method uses the fuzzy c-means clustering method. To optimally tune the initial fuzzy rule. the DNA coding method is also utilized at same time. Box and Jenkins's gas furnace data is used to illustrate the validity of the proposed algorithm.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.14
no.4
/
pp.256-267
/
2014
An automatic switch among ensembles of clustering algorithms is proposed as a part of the bibliographic big data retrieval system by utilizing a fuzzy inference engine as a decision support tool to select the fastest performing clustering algorithm between fuzzy C-means (FCM) clustering, Newman-Girvan clustering, and the combination of both. It aims to realize the best clustering performance with the reduction of computational complexity from O($n^3$) to O(n). The automatic switch is developed by using fuzzy logic controller written in Java and accepts 3 inputs from each clustering result, i.e., number of clusters, number of vertices, and time taken to complete the clustering process. The experimental results on PC (Intel Core i5-3210M at 2.50 GHz) demonstrates that the combination of both clustering algorithms is selected as the best performing algorithm in 20 out of 27 cases with the highest percentage of 83.99%, completed in 161 seconds. The self-adapted FCM is selected as the best performing algorithm in 4 cases and the Newman-Girvan is selected in 3 cases.The automatic switch is to be incorporated into the bibliographic big data retrieval system that focuses on visualization of fuzzy relationship using hybrid approach combining FCM and Newman-Girvan algorithm, and is planning to be released to the public through the Internet.
Journal of the Korea Society of Computer and Information
/
v.20
no.12
/
pp.15-20
/
2015
In this paper, we propose a modified fuzzy clustering algorithm which can overcome the center deviation due to the Euclidean distance commonly used in fuzzy clustering. Among fuzzy clustering methods, Fuzzy C-Means (FCM) is the most well-known clustering algorithm and has been widely applied to various problems successfully. In FCM, however, cluster centers tend leaning to high density clusters because the Euclidean distance measure forces high density cluster to make more contribution to clustering result. Proposed is an enhanced algorithm which modifies the objective function of FCM by adding a center-scattering term to make centers not to be close due to the cluster density. The proposed method converges more to real centers with small number of iterations compared to FCM. All the strengths can be verified with experimental results.
In this paper, the wavelet transform is performed in the input 256$\times$256 color image and decomposes a image into low-pass and high-pass components. Since the high-pass band contains the components of three directions, edges are detected by combining three parts. After finding the position of face using the histogram of the edge component, a face region in low-pass band is cut off. Since RGB color image is sensitively affected by luminances, the image of low pass component is normalized, and a facial region is detected using face color informations. As the wavelet transform decomposes the detected face region into three layer, the dimension of input image is reduced. In this paper, we use the 3000 images of 10 persons, and KL transform is applied in order to classify face vectors effectively. FCM(Fuzzy C-Means) algorithm classifies face vectors with similar features into the same cluster. In this case, the number of cluster is equal to that of person, and the mean vector of each cluster is used as a codebook. We verify the system performance of the proposed algorithm by the experiments. The recognition rates of learning images and testing image is computed using correlation coefficient and Euclidean distance.
Kim, Jae-Young;Park, Dong-Chul;Han, Ji-Ho;Thuy, Huynh Thi Thanh;Song, Young-Soo
Proceedings of the KIEE Conference
/
2009.07a
/
pp.1905_1906
/
2009
본 논문은 데이터의 군집화를 효율적으로 수행하기 위하여 새로운 군집화 알고리즘을 제안한다. 제안되는 군집화 알고리즘은 Fuzzy C-Means (FCM)에 기반을 두는데, FCM 알고리즘은 모든 데이터에 대한 거리에 기본을 둔 멤버쉽을 기초로 하기 때문에 잡음에 약한 제약을 지니고 있었다. 이를 개선하기 위하여, 제안되었던 PCM(Probabilistic C-Means), FPCM(Fuzzy PCM), PFCM(Probabilistic FCM) 등 여러가지 알고리즘이 제안 되었다. 그러나 이들 알고리즘들은 초기 파라미터값 설정과 과다한 계산양에 따른 문제가 증가하였으며, 또한 잡음에 어느 정도 민감한 문제점을 지니고 있었다. 이 논문에서는 잡음에 대해 효과적으로 대응할 수 있는 새로운 군집화 알고리즘을 제안하고, 전통적인 군집화를 위한 Iris 데이터에 대한 실험을 통하여 효용성을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.