• Title/Summary/Keyword: Fuzzy Reasoning

Search Result 391, Processing Time 0.027 seconds

Intelligent Control Design of Mobile robot Using Neural-Fuzzy Control Method (뉴럴-퍼지 제어기법에 의한 이동로봇의 지능제어기 설계)

  • 한성현
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.62-67
    • /
    • 2002
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized loaming architecture. It is Proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tucking of the speed and azimuth of a mobile robot driven by two independent wheels.

Fuzzy Model for controlling of Surface Roughness using End-Mill in Machining (엔드밀을 이용한 기계가공에서 표면거칠기 제어를 위한 퍼지 모델)

  • 김흥배;이우영
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.69-73
    • /
    • 2001
  • The dynamic characteristics of turning processes are complex, non-linear and time-varying. Consequently, the conventional techniques based on crisp mathematical model may not guarantee surface roughness regulation. This paper presents a fuzzy controller which can regulate surface roughness in milling process using end-mill under varying cutting condition. The fuzzy control rules are established from operator experience and expert knowledge about the process dynamics. regulation which increases productivity and tool life is achieved by adjusting feed-rate according to the variation of cutting conditions. The performance of the proposed controller is evaluated by cutting experiments in the converted CNC milling machine. The result of experiments show that the proposed fuzzy controller has a good surface roughness regulation capability in spite of the variation of cutting conditions.

  • PDF

The Azimuth and Velocity Control of a Mobile Robot with Two Drive Wheels by Neural-Fuzzy Control Method (뉴럴-퍼지제어기법에 의한 두 구동휠을 갖는 이동형 로보트의 자세 및 속도 제어)

  • Cho, Y.G.;Bae, J.I.
    • Journal of Power System Engineering
    • /
    • v.2 no.3
    • /
    • pp.74-82
    • /
    • 1998
  • This paper presents a new approach to the design of speed and azimuth control of a mobile robot with two drive wheels. The proposed control scheme uses a Gaussian function as a unit function in the neural-fuzzy network and back propagation algorithm to train the neural-fuzzy network controller in the framework of the specialized learning architecture. It is proposed to a learned controller with two neural-fuzzy networks based on an independent reasoning and a connection net with fixed weights to simplify the neural-fuzzy network. The performance of the proposed controller can be seen by the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

A Study on the Diagnosis of Appendicitis using Fuzzy Neural Network (퍼지 신경망을 이용한 맹장염진단에 관한 연구)

  • 박인규;신승중;정광호
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.253-257
    • /
    • 2000
  • the objective of this study is to design and evaluate a methodology for diagnosing the appendicitis in a fuzzy neural network that integrates the partition of input space by fuzzy entropy and the generation of fuzzy control rules and learning algorithm. In particular the diagnosis of appendicitis depends on the rule of thumb of the experts such that it associates with the region, the characteristics, the degree of the ache and the potential symptoms. In this scheme the basic idea is to realize the fuzzy rle base and the process of reasoning by neural network and to make the corresponding parameters of the fuzzy control rules be adapted by back propagation learning rule. To eliminate the number of the parameters of the rules, the output of the consequences of the control rules is expressed by the network's connection weights. As a result we obtain a method for reducing the system's complexities. Through computer simulations the effectiveness of the proposed strategy is verified for the diagnosis of appendicitis.

  • PDF

Development of Travelling Control Algorithm Based Fuzzy Perception and Neural Network for Two Wheel Driving Robot (퍼지추론 및 뉴럴네트워크 기반 2휠구동 로봇의 주행제어알고리즘 개발)

  • Kang, Eon-Uck;Yang, Jun-Seok;Cha, Bo-Nam;Park, In-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.2
    • /
    • pp.69-76
    • /
    • 2014
  • This paper proposes a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy neural network, and back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

A Fuzzy Model on the PNN Structure and its Applications

  • Sang, R.S.;Oh, Sungkwun;Ahn, T.C.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.259-262
    • /
    • 1997
  • In this paper, a fuzzy model based on the polynomial Neural Network(PNN) structure is proposed to estimate the emission pattern for air pollutant in power plants. The new algorithm uses PNN algorithm based on Group Method of Data Handling (GMDH) algorithm and fuzzy reasoning in order to identify the premise structure and parameter of fuzzy implications rules, and the least square method in order to identify the optimal consequence parameters. Both time series data for the gas furnace and data for the NOx emission process of gas turbine power plants are used for the purpose of evaluating the performance of the fuzzy model. The simulation results show that the proposed technique can produce the optimal fuzzy model with higher accuracy anhd feasibility than other works achieved previously.

  • PDF

Real-Time Control for Autonomous Cruise of Mobile Robot Using Fuzzy Neural Network (퍼지신경망을 이용한 자율주행 이동로봇의 실시간 제어)

  • 정동연;이우송;한성현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1697-1700
    • /
    • 2003
  • We propose a new technique for real-time controller design of a autonomous cruise mobile robot with three drive wheels. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy neural network, and a back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The control performance of the proposed controller is illustrated by performing the computer simulation for trajectory tracking of the speed and azimuth of a autonomous cruise mobile robot driven by three independent wheels.

  • PDF

Real-Time Fuzzy Neural Network Control for Real-Time Autonomous Cruise of Mobile Robot (이동로봇의 자율주행을 위한 실시간 퍼지신경망 제어)

  • 정동연;김종수;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.312-318
    • /
    • 2003
  • We propose a new technique for the cruise control system design of a mobile robot with three drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy neural network and back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized teaming architecture. It is proposed a learning controller consisting of too neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by three independent wheels.

  • PDF

The Azimuth and Velocity Control of a Movile Robot with Two Drive Wheel by Neutral-Fuzzy Control Method (뉴럴-퍼지제어기법에 의한 두 구동휠을 갖는 이동 로봇의 자세 및 속도 제어)

  • 한성현
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.84-95
    • /
    • 1997
  • This paper presents a new approach to the design speed and azimuth control of a mobile robot with drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the frmework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simple the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

Design of Neuro-Fuzzy Controllers for DC Motor Systems with Friction

  • Kim, Min-Jae;Jun oh Jang;Jeon, Gi-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.70-70
    • /
    • 2000
  • Recently, a neuro-fuzzy approach, a combination of neural networks and fuzzy reasoning, has been playing an important role in the motor control. In this paper, a novel method of fiction compensation using neuro-fuzzy architecture has been shown to significantly improve the performance of a DC motor system with nonlinear friction characteristics. The structure of the controller is the neuro-fuzzy network with the TS(Takagi-Sugeno) model. A back-propagation neural network based on a gradient descent algorithm is employed, and all of its parameters can be on-line trained. The performance of the proposed controller is compared with both a conventional neuro-controller and a PI controller.

  • PDF