• Title/Summary/Keyword: Fuzzy Propositions

Search Result 12, Processing Time 0.017 seconds

Direct Torque Control for Induction Motors Using Fuzzy Variable Switching Sector (퍼지 가변스위칭 섹터기법를 이용한 유도전동기의 직접토크 제어)

  • 윤인식;서영민;류지수;이기상;홍순찬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.233-233
    • /
    • 2000
  • Direct torque control (DTC) scheme provides a very quick torque response without the complex field-orientation block and inner current regulation loop. DTC is known as an appropriate scheme for high power induction motet drives because it can be used at lower switching frequency. There are two major drawbacks with the application of DTC schemes : one is large current harmonics due to flux drooping in a low speed range, the other is that the inverter switching frequency is varying according to motor parameters and operating speed. Switching devices in the power electronics drives should be supported for relatively high switching frequency. In this paper, a P-type fuzzy controller to realize the variable switching sector scheme and a PID-type fuzzy switching frequency regulator are adopted. A meaningful contribution of this paper is to propose a simple realization scheme of the fuzzy switching frequency regulator. Simulation results show the effectiveness of those propositions.

  • PDF

A Subclass of Petri Net with Reachability Equivalent to State Equation Satisfiability: Live Single Branch Petri Net

  • Gao, Qian;Cho, Young Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.200-207
    • /
    • 2013
  • Petri Nets are a system description and analysis tool. Reachability is one of the most basic properties in Petri Net research. In a sense, reachability research is the foundation study for other dynamic properties of Petri Nets through which many problems involving Petri Nets can be described. Nowadays, there are two mature analysis methods-the matrix equation and the reachability tree. However, both methods are localized, i.e., it is difficult to find a general algorithm that can determine reachability for an arbitrary Petri Net, especially an unbounded Petri Net. This paper proposes and proves three propositions in order to present a subclass of a Petri Net, the live single-branch Petri Net, whose reachability is equivalent to the satisfiability of the state equation.