• Title/Summary/Keyword: Fuzzy Production System

Search Result 115, Processing Time 0.021 seconds

A Study on the Advancement Structure Model of Maritime Safety Information System(GICOMS) using FSM (FSM을 이용한 해양안전정보시스템의 고도화 구조모델 연구)

  • Ryu, Young-Ha;Park, Kark-Gyei;Kim, Hwa-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.3
    • /
    • pp.337-342
    • /
    • 2014
  • This paper is aims to build the advancement structural model of GICOMS through identification of required system and improvement for implementation of e-Navigation. We derived nine improvement subject for model of advanced GICOMS through the analysis of problems for GICOMS and brainstorming with expert in the maritime safety. And we analyzed the structure of nine improvement subject using by FSM(Fuzzy Structural Modeling) method, and proposed a structural model that to grasp the correlation between elements. As a result, we found out that "advancement of GICOMS" is the final goal, and "improvement a system of information production", "improvement a scheme of information providing", "linkage between GICOMS and VTS" and "building global networks for safety cooperation" are located lowest level. Especially, "advancement of GICOMS" is influenced by "advancement function of VMS" and "Activation of usage" on middle level. We suggested that utilizing state-of-the-art IT facilities, equipment and expertise to improve and enhance the user-centered transition such as maritime workers for advancement of GICOMS based on proposed structure model.

Construction of MATLAB API for Fuzzy Expert System Determining Automobile Warranty Coverage (자동차 보증수리 기간 결정을 위한 퍼지 전문가 시스템용 MATLAB API의 구축)

  • Lee, Sang-Hyoun;Kim, Chul-Min;Kim, Byung-Ki
    • The KIPS Transactions:PartD
    • /
    • v.12D no.6 s.102
    • /
    • pp.869-874
    • /
    • 2005
  • In the recent years there has been an increase of service competition in the activity of product selling, especially in the extension of warranty coverage and qualify. The variables in connection with the service competition are not crisp, and required the expertise of the production line. It thus becomes all the more necessary to use subtler tools as decision supports. These problems are typical not only of product companies but also of financial organizations, credit institutions, insurance, which need predictions of credibility for firms or persons in which they have any kind of interest. A suitable approach for minimizing the risk is to use a knowledge-based system. Most often expert systems are not standalone programs, but are embedded into a larger application. The aim of this paper is to discuss an approach for developing an embedded fuzzy expert system with respect to the product selling policy, especially to present the decision system of automobile selling activity around the extension of warranty coverage and quality. We use the MATLAB tools which integrates computation, visualization, and programming in an easy-to-use environment where problems and solutions are expressed in familiar mathematical notation. Also, we present the API functions embedding into the existing application.

Diagnosis of Rolling Mill Using Wavelet (Wavelet을 이용한 압연기 진단)

  • 김이곤;김창원;송길호
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.597-608
    • /
    • 1998
  • A diagnosis system that provides early warnings regarding machine malfunction is very important for rolling mill so as to avoid great losses resulting from unexpected shutdown of the production line. But it is very difficult to provide early warnings in rolling mill. Because dynamics of rolling mill is non-linear. This paper proposes a new method for diagnosis of rolling mill using wavelet to solve this problem. Proposed method that measures the vibration signals of rolling mill on-line and analyze it using wavelet to acquire pattern datas. And we design a nero-fuzzy model that diagnose a rolling mill using this data. Validity of the new method is asserted by numerical simulation.

  • PDF

Hybrid Genetic Algorithms for Solving Reentrant Flow-Shop Scheduling with Time Windows

  • Chamnanlor, Chettha;Sethanan, Kanchana;Chien, Chen-Fu;Gen, Mitsuo
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.4
    • /
    • pp.306-316
    • /
    • 2013
  • The semiconductor industry has grown rapidly, and subsequently production planning problems have raised many important research issues. The reentrant flow-shop (RFS) scheduling problem with time windows constraint for harddisk devices (HDD) manufacturing is one such problem of the expanded semiconductor industry. The RFS scheduling problem with the objective of minimizing the makespan of jobs is considered. Meeting this objective is directly related to maximizing the system throughput which is the most important of HDD industry requirements. Moreover, most manufacturing systems have to handle the quality of semiconductor material. The time windows constraint in the manufacturing system must then be considered. In this paper, we propose a hybrid genetic algorithm (HGA) for improving chromosomes/offspring by checking and repairing time window constraint and improving offspring by left-shift routines as a local search algorithm to solve effectively the RFS scheduling problem with time windows constraint. Numerical experiments on several problems show that the proposed HGA approach has higher search capability to improve quality of solutions.

Quality monitoring of complex manufacturing systems on the basis of model driven approach

  • Castano, Fernando;Haber, Rodolfo E.;Mohammed, Wael M.;Nejman, Miroslaw;Villalonga, Alberto;Lastra, Jose L. Martinez
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.495-506
    • /
    • 2020
  • Monitoring of complex processes faces several challenges mainly due to the lack of relevant sensory information or insufficient elaborated decision-making strategies. These challenges motivate researchers to adopt complex data processing and analysis in order to improve the process representation. This paper presents the development and implementation of quality monitoring framework based on a model-driven approach using embedded artificial intelligence strategies. In this work, the strategies are applied to the supervision of a microfabrication process aiming at showing the great performance of the framework in a very complex system in the manufacturing sector. The procedure involves two methods for modelling a representative quality variable, such as surface roughness. Firstly, the hybrid incremental modelling strategy is applied. Secondly, a generalized fuzzy clustering c-means method is developed. Finally, a comparative study of the behavior of the two models for predicting a quality indicator, represented by surface roughness of manufactured components, is presented for specific manufacturing process. The manufactured part used in this study is a critical structural aerospace component. In addition, the validation and testing are performed at laboratory and industrial levels, demonstrating proper real-time operation for non-linear processes with relatively fast dynamics. The results of this study are very promising in terms of computational efficiency and transfer of knowledge to manufacturing industry.

Development of Force Feedback Joystick for Remote Control of a Mobile Robot (이동로봇의 원격제어를 위한 힘 반향 조이스틱의 개발)

  • Suh, Se-Wook;Yoo, Bong-Soo;Joh, Joong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.51-56
    • /
    • 2003
  • The main goal of existing mobile robot system was a complete autonomous navigation and the vision information was just used as an assistant way such as monitoring For this reason, the researches have been going towards sophistication of autonomousness gradually and the production costs also has been risen. However, it is also important to control remotely an inexpensive mobile robot system which has no intelligence at all. Such systems may be much more effective than fully autonomous systems in practice. Visual information from a simple camera and distance information from ultrasonic sensors are used for this system. Collision avoidance becomes the most important problem for this system. In this paper, we developed a force feedback joystick to control the robot system remotely with collision avoiding capability. Fuzzy logic is used for the algorithm in order to implement the expert s knowledge intelligently. Some experimental results show the force feedback joystick werks very well.

Elicitation of Collective Intelligence by Fuzzy Relational Methodology (퍼지관계 이론에 의한 집단지성의 도출)

  • Joo, Young-Do
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.17-35
    • /
    • 2011
  • The collective intelligence is a common-based production by the collaboration and competition of many peer individuals. In other words, it is the aggregation of individual intelligence to lead the wisdom of crowd. Recently, the utilization of the collective intelligence has become one of the emerging research areas, since it has been adopted as an important principle of web 2.0 to aim openness, sharing and participation. This paper introduces an approach to seek the collective intelligence by cognition of the relation and interaction among individual participants. It describes a methodology well-suited to evaluate individual intelligence in information retrieval and classification as an application field. The research investigates how to derive and represent such cognitive intelligence from individuals through the application of fuzzy relational theory to personal construct theory and knowledge grid technique. Crucial to this research is to implement formally and process interpretatively the cognitive knowledge of participants who makes the mutual relation and social interaction. What is needed is a technique to analyze cognitive intelligence structure in the form of Hasse diagram, which is an instantiation of this perceptive intelligence of human beings. The search for the collective intelligence requires a theory of similarity to deal with underlying problems; clustering of social subgroups of individuals through identification of individual intelligence and commonality among intelligence and then elicitation of collective intelligence to aggregate the congruence or sharing of all the participants of the entire group. Unlike standard approaches to similarity based on statistical techniques, the method presented employs a theory of fuzzy relational products with the related computational procedures to cover issues of similarity and dissimilarity.

Tco1 is a Hybrid Histidine Kinase Essential for the Sexual Development and Virulence of Ustilago maydis

  • Yun, Yeo Hong;Kim, Seong Hwan
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.60-60
    • /
    • 2015
  • Hybrid histidine kinase is a part of two-component system that is required for various stress responses and pathogenesis of pathogenic fungi. In the present study, Tco1, a homologue of human pathogen Cryptococcus neoformans Tco1 encoding a hybrid histidine kinase, was identified in corn smut pathogen Ustilago maydis by bioinformatic analysis. To explore the role of Tco1 in the virulence of U. maydis, mutants in which the tco1 gene was partially deleted were constructed by allelic exchange. The U. maydis tco1 mutants did show unaltered growth rate on axenic medium but were unable to produce conjugation tubes and develop fuzzy filaments, resulting in impaired mating of compatible strains. The expression levels of prf1, pra1, and mfa1 which are involved in the pheromone pathway significantly decreased in the tco1 mutants. In inoculation tests to host, the tco1 mutants showed significantly reduced ability in the production of anthocyanin pigments and tumor development on maize leaves. Overall, the combined results indicated that Tco1 plays important roles in sexual development and virulence of U. maydis by regulating the expression of the genes involved in the pheromone pathway.

  • PDF

Fault Diagnosis of Induction Motor using Linear Predictive Coding and Deep Neural Network (LPC와 DNN을 결합한 유도전동기 고장진단)

  • Ryu, Jin Won;Park, Min Su;Kim, Nam Kyu;Chong, Ui Pil;Lee, Jung Chul
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.11
    • /
    • pp.1811-1819
    • /
    • 2017
  • As the induction motor is the core production equipment of the industry, it is necessary to construct a fault prediction and diagnosis system through continuous monitoring. Many researches have been conducted on motor fault diagnosis algorithm based on signal processing techniques using Fourier transform, neural networks, and fuzzy inference techniques. In this paper, we propose a fault diagnosis method of induction motor using LPC and DNN. To evaluate the performance of the proposed method, the fault diagnosis was carried out using the vibration data of the induction motor in steady state and simulated various fault conditions. Experimental results show that the learning time of our proposed method and the conventional spectrum+DNN method is 139 seconds and 974 seconds each executed on the experimental PC, and our method reduces execution time by 1/8 compared with conventional method. And the success rate of the proposed method is 98.08%, which is similar to 99.54% of the conventional method.

Prediction of curvature ductility factor for FRP strengthened RHSC beams using ANFIS and regression models

  • Komleh, H. Ebrahimpour;Maghsoudi, A.A.
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.399-414
    • /
    • 2015
  • Nowadays, fiber reinforced polymer (FRP) composites are widely used for rehabilitation, repair and strengthening of reinforced concrete (RC) structures. Also, recent advances in concrete technology have led to the production of high strength concrete, HSC. Such concrete due to its very high compression strength is less ductile; so in seismic areas, ductility is an important factor in design of HSC members (especially FRP strengthened members) under flexure. In this study, the Adaptive Neuro-Fuzzy Inference System (ANFIS) and multiple regression analysis are used to predict the curvature ductility factor of FRP strengthened reinforced HSC (RHSC) beams. Also, the effects of concrete strength, steel reinforcement ratio and externally reinforcement (FRP) stiffness on the complete moment-curvature behavior and the curvature ductility factor of the FRP strengthened RHSC beams are evaluated using the analytical approach. Results indicate that the predictions of ANFIS and multiple regression models for the curvature ductility factor are accurate to within -0.22% and 1.87% error for practical applications respectively. Finally, the effects of height to wide ratio (h/b) of the cross section on the proposed models are investigated.