• Title/Summary/Keyword: Fuzzy Prediction System

Search Result 240, Processing Time 0.021 seconds

Prediction System Design based on An Interval Type-2 Fuzzy Logic System using HCBKA (HCBKA를 이용한 Interval Type-2 퍼지 논리시스템 기반 예측 시스템 설계)

  • Bang, Young-Keun;Lee, Chul-Heui
    • Journal of Industrial Technology
    • /
    • v.30 no.A
    • /
    • pp.111-117
    • /
    • 2010
  • To improve the performance of the prediction system, the system should reflect well the uncertainty of nonlinear data. Thus, this paper presents multiple prediction systems based on Type-2 fuzzy sets. To construct each prediction system, an Interval Type-2 TSK Fuzzy Logic System and difference data were used, because, in general, it has been known that the Type-2 Fuzzy Logic System can deal with the uncertainty of nonlinear data better than the Type-1 Fuzzy Logic System, and the difference data can provide more steady information than that of original data. Also, to improve each rule base of the fuzzy prediction systems, the HCBKA (Hierarchical Correlation Based K-means clustering Algorithm) was applied because it can consider correlationship and statistical characteristics between data at a time. Subsequently, to alleviate complexity of the proposed prediction system, a system selection method was used. Finally, this paper analyzed and compared the performances between the Type-1 prediction system and the Interval Type-2 prediction system using simulations of three typical time series examples.

  • PDF

Design of HCBKA-Based TSK Fuzzy Prediction System with Error Compensation (HCBKA 기반 오차 보정형 TSK 퍼지 예측시스템 설계)

  • Bang, Young-Keun;Lee, Chul-Heui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1159-1166
    • /
    • 2010
  • To improve prediction quality of a nonlinear prediction system, the system's capability for uncertainty of nonlinear data should be satisfactory. This paper presents a TSK fuzzy prediction system that can consider and deal with the uncertainty of nonlinear data sufficiently. In the design procedures of the proposed system, HCBKA(Hierarchical Correlationship-Based K-means clustering Algorithm) was used to generate the accurate fuzzy rule base that can control output according to input efficiently, and the first-order difference method was applied to reflect various characteristics of the nonlinear data. Also, multiple prediction systems were designed to analyze the prediction tendencies of each difference data generated by the difference method. In addition, to enhance the prediction quality of the proposed system, an error compensation method was proposed and it compensated the prediction error of the systems suitably. Finally, the prediction performance of the proposed system was verified by simulating two typical time series examples.

A Study on Fuzzy Time Series Prediction Method using the Genetic Algorithm (유전자 알고리즘을 이용한 퍼지 시계열예측 방법에 관한 연구)

  • Jee, Hyun-Min;Chang, Woo-Seok;Lee, Sung-Mok;Kang, Hwan-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.622-624
    • /
    • 2005
  • This paper proposes a time series prediction method for the nonllinear system using the fuzzy system and its genetic algorithm, At first, we obtain the optimal fuzzy membership function using the genetic algorithm. With the optimal fuzzy rules and its input differences, a better time prediction series system may be obtained. We obtain a good result for the time prediction of the electric load.

  • PDF

Neuro-Fuzzy Approaches to Ozone Prediction System (뉴로-퍼지 기법에 의한 오존농도 예측모델)

  • 김태헌;김성신;김인택;이종범;김신도;김용국
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.6
    • /
    • pp.616-628
    • /
    • 2000
  • In this paper, we present the modeling of the ozone prediction system using Neuro-Fuzzy approaches. The mechanism of ozone concentration is highly complex, nonlinear, and nonstationary, the modeling of ozone prediction system has many problems and the results of prediction is not a good performance so far. The Dynamic Polynomial Neural Network(DPNN) which employs a typical algorithm of GMDH(Group Method of Data Handling) is a useful method for data analysis, identification of nonlinear complex system, and prediction of a dynamical system. The structure of the final model is compact and the computation speed to produce an output is faster than other modeling methods. In addition to DPNN, this paper also includes a Fuzzy Logic Method for modeling of ozone prediction system. The results of each modeling method and the performance of ozone prediction are presented. The proposed method shows that the prediction to the ozone concentration based upon Neuro-Fuzzy approaches gives us a good performance for ozone prediction in high and low ozone concentration with the ability of superior data approximation and self organization.

  • PDF

A Study on development of short term electric load prediction system with the genetic algorithm and the fuzzy system (유전자알고리즘과 퍼지시스템을 이용한 단기부하예측 시스템 개발에 관한 연구)

  • Kang, Hwan-Il;Jang, Woo-Seok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.730-735
    • /
    • 2006
  • This paper proposes a time series prediction method for the short term electrical load will) the fuzzy system and the genetic algorithm. At first, we obtain the optimal fuzzy membership function using the genetic algorithm. With the optimal fuzzy rules and its input differences, a better time prediction system may be obtained. We obtain good results for the time prediction of the short term electric load by the proposed algorithm. In addition we implement the graphic user interface for the proposed algorithms. Finally, we implement the regional prediction system for the electric load.

Design of HCBKA-Based IT2TSK Fuzzy Prediction System (HCBKA 기반 IT2TSK 퍼지 예측시스템 설계)

  • Bang, Young-Keun;Lee, Chul-Heui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1396-1403
    • /
    • 2011
  • It is not easy to analyze the strong nonlinear time series and effectively design a good prediction system especially due to the difficulties in handling the potential uncertainty included in data and prediction method. To solve this problem, a new design method for fuzzy prediction system is suggested in this paper. The proposed method contains the followings as major parts ; the first-order difference detection to extract the stable information from the nonlinear characteristics of time series, the fuzzy rule generation based on the hierarchically classifying clustering technique to reduce incorrectness of the system parameter identification, and the IT2TSK fuzzy logic system to reasonably handle the potential uncertainty of the series. In addition, the design of the multiple predictors is considered to reflect sufficiently the diverse characteristics concealed in the series. Finally, computer simulations are performed to verify the performance and the effectiveness of the proposed prediction system.

The Computer Fault Prediction and Diagnosis Fuzzy Expert System (컴퓨터 고장 예측 및 진단 퍼지 전문가 시스템)

  • 최성운
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.54
    • /
    • pp.155-165
    • /
    • 2000
  • The fault diagnosis is a systematic and unified method to find based on the observing data resulting in noises. This paper presents the fault prediction and diagnosis using fuzzy expert system technique to manipulate the uncertainties efficiently in predictive perspective. We apply a fuzzy event tree analysis to the computer system, and build up the fault prediction and diagnosis using fuzzy expert system that predicts and diagnoses the error of the system in the advance of error.

  • PDF

Design of fuzzy logic Run-by-Run controller for rapid thermal precessing system (고속 열처리공정 시스템의 퍼지 Run-by-Run 제어기 설계)

  • Lee, Seok-Joo;Woo, Kwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.104-111
    • /
    • 2000
  • A fuzzy logic Run-by-Run(RbR) controller and an in -line wafer characteristics prediction scheme for the rapid thermal processing system have been developed for the study of process repeatability. The fuzzy logic RbR controller provides a framework for controlling a process which is subject to disturbances such as shifts and drifts as a normal part of its operation. The fuzzy logic RbR controller combines the advantages of both fuzzy logic and feedback control. It has two components : fuzzy logic diagnostic system and model modification system. At first, a neural network model is constructed with the I/O data collected during the designed experiments. The wafer state after each run is assessed by the fuzzy logic diagnostic system with featuring step. The model modification system updates the existing neural network process model in case of process shift or drift, and then select a new recipe based on the updated model using genetic algorithm. After this procedure, wafer characteristics are predicted from the in-line wafer characteristics prediction model with principal component analysis. The fuzzy logic RbR controller has been applied to the control of Titanium SALICIDE process. After completing all of the above, it follows that: 1) the fuzzy logic RbR controller can compensate the process draft, and 2) the in-line wafer characteristics prediction scheme can reduce the measurement cost and time.

  • PDF

Electric Power Load Forecasting using Fuzzy Prediction System (퍼지 예측 시스템을 이용한 전력 부하 예측)

  • Bang, Young-Keun;Shim, Jae-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1590-1597
    • /
    • 2013
  • Electric power is an important part in economic development. Moreover, an accurate load forecast can make a financing planning, power supply strategy and market research planned effectively. This paper used the fuzzy logic system to predict the regional electric power load. To design the fuzzy prediction system, the correlation-based clustering algorithm and TSK fuzzy model were used. Also, to improve the prediction system's capability, the moving average technique and relative increasing rate were used in the preprocessing procedure. Finally, using four regional electric power load in Taiwan, this paper verified the performance of the proposed system and demonstrated its effectiveness and usefulness.

Forecasting High-Level Ozone Concentration with Fuzzy Clustering (퍼지 클러스터링을 이용한 고농도오존예측)

  • 김재용;김성신;왕보현
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.191-194
    • /
    • 2001
  • The ozone forecasting systems have many problems because the mechanism of the ozone concentration is highly complex, nonlinear, and nonstationary. Also, the results of prediction are not a good performance so far, especially in the high-level ozone concentration. This paper describes the modeling method of the ozone prediction system using neuro-fuzzy approaches and fuzzy clustering. The dynamic polynomial neural network (DPNN) based upon a typical algorithm of GMDH (group method of data handling) is a useful method for data analysis, identification of nonlinear complex system, and prediction of a dynamical system.

  • PDF