• Title/Summary/Keyword: Fuzzy Pattern Recognition Algorithm

Search Result 78, Processing Time 0.021 seconds

Design of Fingerprints Identification Based on RBFNN Using Image Processing Techniques (영상처리 기법을 통한 RBFNN 패턴 분류기 기반 개선된 지문인식 시스템 설계)

  • Bae, Jong-Soo;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1060-1069
    • /
    • 2016
  • In this paper, we introduce the fingerprint recognition system based on Radial Basis Function Neural Network(RBFNN). Fingerprints are classified as four types(Whole, Arch, Right roof, Left roof). The preprocessing methods such as fast fourier transform, normalization, calculation of ridge's direction, filtering with gabor filter, binarization and rotation algorithm, are used in order to extract the features on fingerprint images and then those features are considered as the inputs of the network. RBFNN uses Fuzzy C-Means(FCM) clustering in the hidden layer and polynomial functions such as linear, quadratic, and modified quadratic are defined as connection weights of the network. Particle Swarm Optimization (PSO) algorithm optimizes a number of essential parameters needed to improve the accuracy of RBFNN. Those optimized parameters include the number of clusters and the fuzzification coefficient used in the FCM algorithm, and the orders of polynomial of networks. The performance evaluation of the proposed fingerprint recognition system is illustrated with the use of fingerprint data sets that are collected through Anguli program.

STUDY OF CORE SUPPORT BARREL VIBRATION MONITORING USING EX-CORE NEUTRON NOISE ANALYSIS AND FUZZY LOGIC ALGORITHM

  • CHRISTIAN, ROBBY;SONG, SEON HO;KANG, HYUN GOOK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.2
    • /
    • pp.165-175
    • /
    • 2015
  • The application of neutron noise analysis (NNA) to the ex-core neutron detector signal for monitoring the vibration characteristics of a reactor core support barrel (CSB) was investigated. Ex-core flux data were generated by using a nonanalog Monte Carlo neutron transport method in a simulated CSB model where the implicit capture and Russian roulette technique were utilized. First and third order beam and shell modes of CSB vibration were modeled based on parallel processing simulation. A NNA module was developed to analyze the ex-core flux data based on its time variation, normalized power spectral density, normalized cross-power spectral density, coherence, and phase differences. The data were then analyzed with a fuzzy logic module to determine the vibration characteristics. The ex-core neutron signal fluctuation was directly proportional to the CSB's vibration observed at 8Hz and15Hzin the beam mode vibration, and at 8Hz in the shell mode vibration. The coherence result between flux pairs was unity at the vibration peak frequencies. A distinct pattern of phase differences was observed for each of the vibration models. The developed fuzzy logic module demonstrated successful recognition of the vibration frequencies, modes, orders, directions, and phase differences within 0.4 ms for the beam and shell mode vibrations.

Control of Ubiquitous Environment using Sensors Module (센서모듈을 이용한 유비쿼터스 환경의 제어)

  • Jung, Tae-Min;Choi, Woo-Kyung;Kim, Seong-Joo;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.190-195
    • /
    • 2007
  • As Ubiquitous era comes, it became necessary to construct environment which can provide more useful information to human in the spaces where people live like homes or offices. On this account, network of the peripheral devices of Ubiquitous should constitute efficiently. For it, this paper researched human pattern by classified motion recognition using sensors module data. (This data processing by Neural network and fuzzy algorithm.) This pattern classification can help control home network system communication. I suggest the system which can control home network system more easily through patterned movement, and control Ubiquitous environment by grasp human's movement and condition.

Design of Optimized Radial Basis Function Neural Networks Classifier Using EMC Sensor for Partial Discharge Pattern Recognition (부분방전 패턴인식을 위해 EMC센서를 이용한 최적화된 RBFNNs 분류기 설계)

  • Jeong, Byeong-Jin;Lee, Seung-Cheol;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.9
    • /
    • pp.1392-1401
    • /
    • 2017
  • In this study, the design methodology of pattern classification is introduced for avoiding faults through partial discharge occurring in the power facilities and local sites. In order to classify some partial discharge types according to the characteristics of each feature, the model is constructed by using the Radial Basis Function Neural Networks(RBFNNs) and Particle Swarm Optimization(PSO). In the input layer of the RBFNNs, the feature vector is searched and the dimension is reduced through Principal Component Analysis(PCA) and PSO. In the hidden layer, the fuzzy coefficients of the fuzzy clustering method(FCM) are tuned using PSO. Raw datasets for partial discharge are obtained through the Motor Insulation Monitoring System(MIMS) instrument using an Epoxy Mica Coupling(EMC) sensor. The preprocessed datasets for partial discharge are acquired through the Phase Resolved Partial Discharge Analysis(PRPDA) preprocessing algorithm to obtain partial discharge types such as void, corona, surface, and slot discharges. Also, when the amplitude size is considered as two types of both the maximum value and the average value in the process for extracting the preprocessed datasets, two different kinds of feature datasets are produced. In this study, the classification ratio between the proposed RBFNNs model and other classifiers is shown by using the two different kinds of feature datasets, and also we demonstrate the proposed model shows superiority from the viewpoint of classification performance.

Implementation of Unsupervised Nonlinear Classifier with Binary Harmony Search Algorithm (Binary Harmony Search 알고리즘을 이용한 Unsupervised Nonlinear Classifier 구현)

  • Lee, Tae-Ju;Park, Seung-Min;Ko, Kwang-Eun;Sung, Won-Ki;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.354-359
    • /
    • 2013
  • In this paper, we suggested the method for implementation of unsupervised nonlinear classification using Binary Harmony Search (BHS) algorithm, which is known as a optimization algorithm. Various algorithms have been suggested for classification of feature vectors from the process of machine learning for pattern recognition or EEG signal analysis processing. Supervised learning based support vector machine or fuzzy c-mean (FCM) based on unsupervised learning have been used for classification in the field. However, conventional methods were hard to apply nonlinear dataset classification or required prior information for supervised learning. We solved this problems with proposed classification method using heuristic approach which took the minimal Euclidean distance between vectors, then we assumed them as same class and the others were another class. For the comparison, we used FCM, self-organizing map (SOM) based on artificial neural network (ANN). KEEL machine learning datset was used for simulation. We concluded that proposed method was superior than other algorithms.

3D Global Dynamic Window Approach for Navigation of Autonomous Underwater Vehicles

  • Tusseyeva, Inara;Kim, Seong-Gon;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.91-99
    • /
    • 2013
  • An autonomous unmanned underwater vehicle is a type of marine self-propelled robot that executes some specific mission and returns to base on completion of the task. In order to successfully execute the requested operations, the vehicle must be guided by an effective navigation algorithm that enables it to avoid obstacles and follow the best path. Architectures and principles for intelligent dynamic systems are being developed, not only in the underwater arena but also in related areas where the work does not fully justify the name. The problem of increasing the capacity of systems management is highly relevant based on the development of new methods for dynamic analysis, pattern recognition, artificial intelligence, and adaptation. Among the large variety of navigation methods that presently exist, the dynamic window approach is worth noting. It was originally presented by Fox et al. and has been implemented in indoor office robots. In this paper, the dynamic window approach is applied to the marine world by developing and extending it to manipulate vehicles in 3D marine environments. This algorithm is provided to enable efficient avoidance of obstacles and attainment of targets. Experiments conducted using the algorithm in MATLAB indicate that it is an effective obstacle avoidance approach for marine vehicles.

Pattern Recognition Improvement of an Ultrasonic Sensor System Using Neuro-Fuzzy Signal Processing (초음파센서 시스템의 패턴인식 개선을 위한 뉴로퍼지 신호처리)

  • Na, Seung-You;Park, Min-Sang
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.12
    • /
    • pp.17-26
    • /
    • 1998
  • Ultrasonic sensors are widely used in various applications due to advantages of low cost, simplicity in construction, mechanical robustness, and little environmental restriction in usage. But for the application of object recognition, ultrasonic sensors exhibit several shortcomings of poor directionality which results in low spatial resolution of objects, and specularity which gives frequent erroneous range readings. The time-of-flight(TOF) method generally used for distance measurement can not distinguish small object patterns of plane, corner or edge. To resolve the problem, an increased number of the sensors in the forms of a linear array or 2-dimensional array of the sensors has been used. Also better resolution has been obtained by shifting the array in several steps using mechanical actuators. Also simple patterns are classified based on analyzing signal reflections. In this paper we propose a method of a sensor array system with improved capability in pattern distinction using electronic circuits accompanying the sensor array, and intelligent algorithm based on neuro-fuzzy processing of data fusion. The circuit changes transmitter output voltages of array elements in several steps. A set of different return signals from neighborhood sensors is manipulated to provide enhanced pattern recognition in the aspects of inclination angle, size and shift as well as distance of objects. The results show improved resolution of the measurements for smaller targets.

  • PDF

A study on the development of ADEX (ADEX 개발에 관한 연구)

  • Oh, Jae-Eung;Shin, Joon;Hahn, Chang-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.453-456
    • /
    • 1992
  • Diagnostic prototype expert system was developed by analyzing the measured acoustical data of automobile. For the utilities of this system, 1/3 octave filter(band-pass filter) and A/D converter were used for data acquisition and then information was analyzed using signal processing technique and pattern recognition by Hamming network algorithm. In order to raise the reliability of the diagnostic results, fuzzy inference technique was applied and, the results were displayed as graphical method to help the novice in diagnostic field. The validation of this diagnostic system was checked through experiments and it showed and acceptable performance for diagnostic process.

  • PDF

An Identification Technique Based on Adaptive Radial Basis Function Network for an Electronic Odor Sensing System

  • Byun, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.151-155
    • /
    • 2011
  • A variety of pattern recognition algorithms including neural networks may be applicable to the identification of odors. In this paper, an identification technique for an electronic odor sensing system applicable to wound state monitoring is presented. The performance of the radial basis function(RBF) network is highly dependent on the choice of centers and widths in basis function. For the fine tuning of centers and widths, those parameters are initialized by an ill-conditioned genetic fuzzy c-means algorithm, and the distribution of input patterns in the very first stage, the stochastic gradient(SG), is adapted. The adaptive RBF network with singular value decomposition(SVD), which provides additional adaptation capabilities to the RBF network, is used to process data from array-based gas sensors for early detection of wound infection in burn patients. The primary results indicate that infected patients can be distinguished from uninfected patients.

A Study on Precise Control of Autonomous Travelling Robot Based on RVR (RVR에 의한 자율주행로봇의 정밀제어에 관한연구)

  • Shim, Byoung-Kyun;Cong, Nguyen Huu;Kim, Jong-Soo;Ha, Eun-Tae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.2
    • /
    • pp.42-53
    • /
    • 2014
  • Robust voice recognition (RVR) is essential for a robot to communicate with people. One of the main problems with RVR for robots is that robots inevitably real environment noises. The noise is captured with strong power by the microphones, because the noise sources are closed to the microphones. The signal-to-noise ratio of input voice becomes quite low. However, it is possible to estimate the noise by using information on the robot's own motions and postures, because a type of motion/gesture produces almost the same pattern of noise every time it is performed. In this paper, we propose an RVR system which can robustly recognize voice by adults and children in noisy environments. We evaluate the RVR system in a communication robot placed in a real noisy environment. Voice is captured using a wireless microphone. Navigation Strategy is shown Obstacle detection and local map, Design of Goal-seeking Behavior and Avoidance Behavior, Fuzzy Decision Maker and Lower level controller. The final hypothesis is selected based on posterior probability. We then select the task in the motion task library. In the motion control, we also integrate the obstacle avoidance control using ultrasonic sensors. Those are powerful for detecting obstacle with simple algorithm.