• 제목/요약/키워드: Fuzzy Pattern Recognition Algorithm

검색결과 78건 처리시간 0.024초

A recognition of hand written hangul by fuzzy inference

  • Song, Jeong-Young;Lee, Hee-Hyol;Akizuki, Kageo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1181-1185
    • /
    • 1991
  • Unlike printed character, the recognition of Hand written one has various kinds of difficulties due to the existence of the huge pattern associated with the person who writes. Therefore, in general, recognition of Hand written characters requires an algorithm which takes into consideration of the individual differences. Hangul characters are basically made of straight lines and circles. They can be represented in terms of feature parameters such as the end point of the straight line, the length and the angle. Then all Hangul characters can be represented by the number of basic segments(-, /, vertical bar, O) multiplied by the feature parameters respectively. In this study we propose a method for recognizing Hand written Hangul characters in terms of fuzzy inference.

  • PDF

FCM 알고리즘을 이용한 이진 결정 트리의 구성에 관한 연구 (A Study on the Design of Binary Decision Tree using FCM algorithm)

  • 정순원;박중조;김경민;박귀태
    • 전자공학회논문지B
    • /
    • 제32B권11호
    • /
    • pp.1536-1544
    • /
    • 1995
  • We propose a design scheme of a binary decision tree and apply it to the tire tread pattern recognition problem. In this scheme, a binary decision tree is constructed by using fuzzy C-means( FCM ) algorithm. All the available features are used while clustering. At each node, the best feature or feature subset among these available features is selected based on proposed similarity measure. The decision tree can be used for the classification of unknown patterns. The proposed design scheme is applied to the tire tread pattern recognition problem. The design procedure including feature extraction is described. Experimental results are given to show the usefulness of this scheme.

  • PDF

Android-Based E-Board Smart Education Platform Using Digital Pen and Dot Pattern

  • Cho, Young Im;Altayeva, Aigerim Bakatkaliyevna
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권4호
    • /
    • pp.260-267
    • /
    • 2015
  • In the past, we implemented a web-based smart education platform, but this is not efficient in a smart or mobile education environment. Therefore, in this paper, we propose an Android-based e-board smart platform for a smart or mobile education system. Here, we use Anoto digital pen- and dot pattern-based technologies. This Android-based smart education platform is efficient for a smart education environment. Further, we implement the hardware and software parts of the technologies, an Anoto-based trajectory recognition algorithm, and a probabilistic neural network for handwritten digit and hand gesture recognition.

개별 입력 공간 기반 퍼지 뉴럴 네트워크에 의한 최적화된 패턴 인식기 설계 (Design of Optimized Pattern Recognizer by Means of Fuzzy Neural Networks Based on Individual Input Space)

  • 박건준;김용갑;김변곤;황근창
    • 한국인터넷방송통신학회논문지
    • /
    • 제13권2호
    • /
    • pp.181-189
    • /
    • 2013
  • 본 논문에서는 패턴 인식기를 설계하기 위하여 개별 입력 공간을 기반으로 한 퍼지 뉴럴 네트워크를 소개한다. 제안된 퍼지 뉴럴 네트워크는 각 입력 공간을 개별적으로 분할함으로서 네트워크를 구성한다. 규칙의 전반부는 개별적 입력 공간을 퍼지 분할하여 독립적으로 구성하고, 규칙의 후반부는 다항식으로서 표현된다. 퍼지 뉴럴 네트워크의 학습은 퍼지 규칙의 후반부에 있는 뉴런의 연결가중치를 조정함으로써 실현되고, 오류 역전파 알고리즘을 이용하여 실현한다. 또한, 제안한 네트워크의 파라미터를 최적화하기 위하여 실수 코딩 유전자 알고리즘을 이용한다. 마지막으로, 패턴 인식을 위한 실험 데이터를 이용하여 최적화된 패턴 인식기를 설계한다.

모호성을 포함하고 있는 시계열 패턴인식을 위한 새로운 모델 RFAM과 그 응용 (A Novel Model, Recurrent Fuzzy Associative Memory, for Recognizing Time-Series Patterns Contained Ambiguity and Its Application)

  • 김원;이중재;김계영;최형일
    • 정보처리학회논문지B
    • /
    • 제11B권4호
    • /
    • pp.449-456
    • /
    • 2004
  • 본 논문에서는 모호성을 포함하고 있는 시계열 패턴인식을 위한 새로운 인식모델인 순환퍼지기억장치를 제안한다. 순환퍼지기억장치는 기존의 퍼지기억장치에 순차적인 입력패턴를 처리하고 시간적 관련성을 표현할 수 있는 순환층을 추가함으로써 확장된 모델이다. 본 논문에서 제안하는 순환퍼지기억장치는 입력과 출력사이의 관련정도를 설정하기 위해 헤비안 방식의 학습알고리즘을 사용한다. 그리고 순환퍼지기억장치의 순환층에 필요한 가중치를 학습하기 위해서 오류역전파 알고리즘을 이용한다. 본 논문에서는 제안하는 모델을 음성신호의 경계를 추출하는 문제에 적용하여 성능을 평가한다.

Hybrid Feature Selection Using Genetic Algorithm and Information Theory

  • Cho, Jae Hoon;Lee, Dae-Jong;Park, Jin-Il;Chun, Myung-Geun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권1호
    • /
    • pp.73-82
    • /
    • 2013
  • In pattern classification, feature selection is an important factor in the performance of classifiers. In particular, when classifying a large number of features or variables, the accuracy and computational time of the classifier can be improved by using the relevant feature subset to remove the irrelevant, redundant, or noisy data. The proposed method consists of two parts: a wrapper part with an improved genetic algorithm(GA) using a new reproduction method and a filter part using mutual information. We also considered feature selection methods based on mutual information(MI) to improve computational complexity. Experimental results show that this method can achieve better performance in pattern recognition problems than other conventional solutions.

퍼지 RBFNNs와 증분형 주성분 분석법으로 실현된 숫자 인식 시스템의 설계 (Design of Digit Recognition System Realized with the Aid of Fuzzy RBFNNs and Incremental-PCA)

  • 김봉연;오성권;김진율
    • 한국지능시스템학회논문지
    • /
    • 제26권1호
    • /
    • pp.56-63
    • /
    • 2016
  • 본 연구에서는 퍼지 RBFNNs과 증분형 주성분 분석법으로 실현된 숫자인식 시스템의 설계를 소개한다. 주성분 분석법은 차원축소를 위해 사용되는 알고리즘으로 학습데이터의 차원 수가 고차원이거나 데이터의 양이 많을 때 특징 추출을 위한 많은 계산 시간을 필요로 한다. 따라서 고차원 데이터의 효율적인 차원축소와 점진적인 학습을 위해 증분형 주성분분석법을 적용하는 방법을 제안한다. 방사형 기저함수 신경회로망의 구조는 조건부, 결론부, 추론부의 3가지 기능적 모듈로서 구분이 가능하다. 조건부에서는 FCM 클러스터링 알고리즘의 도움으로 실현된 퍼지 클러스터링의 사용으로 입력 공간을 분할한다. 또한 가우시안 함수 대신 FCM(Fuzzy C-Means)클러스터링 알고리즘의 멤버쉽 값을 사용함으로써 입력 데이터의 특성을 좀 더 잘 반영할 수 있도록 개선하였으며, 결론부에서 연결가중치는 상수항에서 일차식과 이차식, 그리고 변형된 이차식과 같은 다항식의 형태로 확장하여 사용한다. 실험 결과는 공인 숫자 데이터인 MNIST 필기체 숫자 데이터를 사용하여 제안된 숫자 인식 시스템의 효율성을 다른 연구와의 비교를 통해 입증한다.

퍼지 결정 트리를 이용한 온라인 필기 문자의 계층적 인식 (An Application of Fuzzy Decision Trees for Hierarchical Recognition of Handwriting Symbols)

  • 전병환;김성훈;김재희
    • 전자공학회논문지B
    • /
    • 제31B권3호
    • /
    • pp.132-140
    • /
    • 1994
  • 온라인 필기 문자 인식 시스템 'SCRIPT(Symbol/Character Recognition In Pen-based Technology)'는 조합 가능한 모든 한글과 영어 대문자, 숫자, 그리고 키보드 부호 등 자연스럽게 필기되는 정자체 문자를 인식하기 위한 알고리듬이다. 필기 문자는 동일인이 쓰더라도 형태의 변화가 다양해서 정보의 불확실성을 지니게 된다. 그런데 기존의 결정 트리(decision tree)를 이용한 특징 분석 방법(feature analysis approach)은 효율적이지만 필기의 변형에 약하여 잘못된 선택을 하기 쉽기 때문에, 이러한 단점을 보완할 수 있는 방법이 필요하다. 이 논문에서는 패턴의 계층적(hierarchical)특성에 맞추어 획 자체의 형태와 획간의 위치 관계를 파악하기 위한 두 단계의 퍼지 결정 트리(fuzzy decision trees)를 사용하여 문자 패턴의 특징을 분석하는 방법을 제안한다. 이러한 방법은 다양한 가능성을 저장함으로써 형태의 변형에 강하고 이전의 잘못된 선택을 수정하기 쉬우며, 특히 하위 후보 패턴들에 의한 상위 패턴의 인식률 상승 효과가 매우 크다. 실헌 결과, 한글은 약 91%의 인식률과 약 0.33초의 인식 속도를 나타냈으며, 영어 및 기타 문자는 약 95%의 인식률과 약 0.08초의 인식 속도를 보였다. 이는 퍼지 결정 트리를 적용하지 않은 겨우에 비하여 인식률이 8~18% 정도 향상된 것이다.

  • PDF

Study on Design of Fingerprint Recognition Embedded System using Neural Network

  • Kim, Dong Han;Kim, Jung Hoon;Lee, Sang Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제4권3호
    • /
    • pp.347-352
    • /
    • 2004
  • We generated blocks from the direction-extracted fingerprint during the pre-process of the fingerprint recognition algorithm and performed training by using the direction minutiae of each block as the input pattern of the neural network, so that we extracted the core points to use in the matching. Based on this, we designed the fingerprint recognition embedded system and tested it by using the control board and the serial communication to utilize it for a variety of application systems. As a result, we can verify the reliance satisfactorily.

패턴인식의 정화성을 향상하기 위한 지능시스템 연구 (A study of intelligent system to improve the accuracy of pattern recognition)

  • 정성부;김주웅
    • 한국정보통신학회논문지
    • /
    • 제12권7호
    • /
    • pp.1291-1300
    • /
    • 2008
  • 본 논문에서는 패턴인식의 정확성을 향상시키기 위한 지능시스템을 제안한다. 제안한 지능시스템은 신경회로망의 무감독학습 방법인 SOPM(Self Organizing Feature Map), LVQ(Learning Vector Quantization), 그리고 퍼지이론의 FCM(Fuzzy C-means)을 이용하여 구성한다. 제안한 지능시스템의 유용성은 실험을 통해 확인한다. 실험은 Fisher의 Iris 데이터 분류, Cambridge 대학의 Olivetti 연구실(ORL; Olivetti Research Laboratory)에서 제공하는 얼굴 데이터베이스를 이용한 얼굴 영상 데이터 분류, 그리고 근전도(EMG, Electromyogram) 데이터를 분류하는 것이다. 제안한 지능시스템은 일반적인 LVQ와 비교한다. 실험을 통해 제안한 지능시스템이 일반적인 LVQ보다 패턴 인식의 정확성이 더 우수함을 알 수가 있었다.