• 제목/요약/키워드: Fuzzy Pattern Recognition Algorithm

검색결과 78건 처리시간 0.023초

A Novel Image Segmentation Method Based on Improved Intuitionistic Fuzzy C-Means Clustering Algorithm

  • Kong, Jun;Hou, Jian;Jiang, Min;Sun, Jinhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권6호
    • /
    • pp.3121-3143
    • /
    • 2019
  • Segmentation plays an important role in the field of image processing and computer vision. Intuitionistic fuzzy C-means (IFCM) clustering algorithm emerged as an effective technique for image segmentation in recent years. However, standard fuzzy C-means (FCM) and IFCM algorithms are sensitive to noise and initial cluster centers, and they ignore the spatial relationship of pixels. In view of these shortcomings, an improved algorithm based on IFCM is proposed in this paper. Firstly, we propose a modified non-membership function to generate intuitionistic fuzzy set and a method of determining initial clustering centers based on grayscale features, they highlight the effect of uncertainty in intuitionistic fuzzy set and improve the robustness to noise. Secondly, an improved nonlinear kernel function is proposed to map data into kernel space to measure the distance between data and the cluster centers more accurately. Thirdly, the local spatial-gray information measure is introduced, which considers membership degree, gray features and spatial position information at the same time. Finally, we propose a new measure of intuitionistic fuzzy entropy, it takes into account fuzziness and intuition of intuitionistic fuzzy set. The experimental results show that compared with other IFCM based algorithms, the proposed algorithm has better segmentation and clustering performance.

패턴인식기법을 이용한 공구마멸상태의 분류 (The Classification of Tool Wear States Using Pattern Recognition Technique)

  • 이종항;이상조
    • 대한기계학회논문집
    • /
    • 제17권7호
    • /
    • pp.1783-1793
    • /
    • 1993
  • Pattern recognition technique using fuzzy c-means algorithm and multilayer perceptron was applied to classify tool wear states in turning. The tool wear states were categorized into the three regions 'Initial', 'Normal', 'Severe' wear. The root mean square(RMS) value of acoustic emission(AE) and current signal was used for the classification of tool wear states. The simulation results showed that a fuzzy c-means algorithm was better than the conventional pattern recognition techniques for classifying ambiguous informations. And normalized RMS signal can provide good results for classifying tool wear. In addition, a fuzzy c-means algorithm(success rate for tool wear classification : 87%) is more efficient than the multilayer perceptron(success rate for tool wear classification : 70%).

효과적인 운송 컨테이너 영상의 식별자 인식을 위한 개선된 퍼지 ART 알고리즘 (An Enhanced Fuzzy ART Algorithm for The Effective Identifier Recognition From Shipping Container Image)

  • 김광백
    • 한국통신학회논문지
    • /
    • 제28권5C호
    • /
    • pp.486-492
    • /
    • 2003
  • 퍼지 ART 알고리즘에서 경계 변수는 임의의 패턴과 저장된 패턴과의 불일치(mismatch) 허용도를 결정한다. 이 경계 변수가 크면 입력 패턴과 저장 패턴 사이에 약간의 차이가 있어도 새로운 카테고리(category)로 분류하게 된다. 반대로 경계 변수가 작으면 입력 패턴과 저장 패턴 사이에 많은 차이가 있더라도 유사성이 인정되어 입력 패턴을 저장 패턴의 카테고리로 분류한다. 따라서 영상 인식에 적용하기 위해서는 경계 변수를 경험적으로 설정한다. 그리고 연결 가중치를 조정하는 과정에서 저장된 패턴들의 정보들이 손실되는 경우가 발생하여 인식률을 저하시킨다. 본 논문에서는 퍼지 ART 알고리즘의 문제점을 개선하기 위하여 퍼지 논리 접속 연산자를 이용하여 경계 변수를 동적으로 조정하고 저장 패턴과 학습 패턴간의 실제적인 왜곡 정도를 충분히 고려하여 승자 노드로 선택된 빈도수를 가중치 조정에 적용하는 개선된 퍼지 ART 알고리즘을 제안하였다. 제안된 방법의 인식 성능을 확인하기 위해서 운송 컨테이너 영상을 대상으로 실험한 결과, 기존의 ART2 알고리즘이나 퍼지 ART 알고리즘보다 클러스터의 수가 적게 생성되었고 인식 성능도 기존의 방법들보다 우수한 성능이 있음을 확인하였다.

Neuro-Fuzzy 기법을 이용한 부분방전 패턴인식에 대한 연구 (A Study on Partial Discharge Pattern Recognition Using Neuro-Fuzzy Techniques)

  • 박건준;김길성;오성권;최원;김정태
    • 전기학회논문지
    • /
    • 제57권12호
    • /
    • pp.2313-2321
    • /
    • 2008
  • In order to develop reliable on-site partial discharge(PD) pattern recognition algorithm, the fuzzy neural network based on fuzzy set(FNN) and the polynomial network pattern classifier based on fuzzy Inference(PNC) were investigated and designed. Using PD data measured from laboratory defect models, these algorithms were learned and tested. Considering on-site situation where it is not easy to obtain voltage phases in PRPDA(Phase Resolved Partial Discharge Analysis), the measured PD data were artificially changed with shifted voltage phases for the test of the proposed algorithms. As input vectors of the algorithms, PRPD data themselves were adopted instead of using statistical parameters such as skewness and kurtotis, to improve uncertainty of statistical parameters, even though the number of input vectors were considerably increased. Also, results of the proposed neuro-fuzzy algorithms were compared with that of conventional BP-NN(Back Propagation Neural Networks) algorithm using the same data. The FNN and PNC algorithms proposed in this study were appeared to have better performance than BP-NN algorithm.

패턴 인식을 위한 Interval Type-2 퍼지 집합 기반의 최적 다중출력 퍼지 뉴럴 네트워크 (Optimized Multi-Output Fuzzy Neural Networks Based on Interval Type-2 Fuzzy Set for Pattern Recognition)

  • 박건준;오성권
    • 전기학회논문지
    • /
    • 제62권5호
    • /
    • pp.705-711
    • /
    • 2013
  • In this paper, we introduce an design of multi-output fuzzy neural networks based on Interval Type-2 fuzzy set. The proposed Interval Type-2 fuzzy set-based fuzzy neural networks with multi-output (IT2FS-based FNNm) comprise the network structure generated by dividing the input space individually. The premise part of the fuzzy rules of the network reflects the individuality of the division space for the entire input space and the consequent part of the fuzzy rules expresses three types of polynomial functions with interval sets such as constant, linear, and modified quadratic inference for pattern recognition. The learning of fuzzy neural networks is realized by adjusting connections of the neurons in the consequent part of the fuzzy rules, and it follows a back-propagation algorithm. In addition, in order to optimize the network, the parameters of the network such as apexes of membership functions, uncertainty factor, learning rate and momentum coefficient were automatically optimized by using real-coded genetic algorithm. The proposed model is evaluated with the use of numerical experimentation.

최적 Type-2 퍼지신경회로망 설계와 응용 (The Design of Optimized Type-2 Fuzzy Neural Networks and Its Application)

  • 김길성;안인석;오성권
    • 전기학회논문지
    • /
    • 제58권8호
    • /
    • pp.1615-1623
    • /
    • 2009
  • In order to develop reliable on-site partial discharge (PD) pattern recognition algorithm, we introduce Type-2 Fuzzy Neural Networks (T2FNNs) optimized by means of Particle Swarm Optimization(PSO). T2FNNs exploit Type-2 fuzzy sets which have a characteristic of robustness in the diverse area of intelligence systems. Considering the on-site situation where it is not easy to obtain voltage phases to be used for PRPDA (Phase Resolved Partial Discharge Analysis), the PD data sets measured in the laboratory were artificially changed into data sets with shifted voltage phases and added noise in order to test the proposed algorithm. Also, the results obtained by the proposed algorithm were compared with that of conventional Neural Networks(NNs) as well as the existing Radial Basis Function Neural Networks (RBFNNs). The T2FNNs proposed in this study were appeared to have better performance when compared to conventional NNs and RBFNNs.

퍼지 Clustering 알고리즘을 이용한 휘발성 화학물질의 분류 (Classification of Volatile Chemicals using Fuzzy Clustering Algorithm)

  • 변형기;김갑일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1042-1044
    • /
    • 1996
  • The use of fuzzy theory in task of pattern recognition may be applicable gases and odours classification and recognition. This paper reports results obtained from fuzzy c-means algorithms to patterns generated by odour sensing system using an array of conducting polymer sensors, for volatile chemicals. For the volatile chemicals clustering problem, the three unsupervise fuzzy c-means algorithms were applied. From among the pattern clustering methods, the FCMAW algorithm, which updated the cluster centres more frequently, consistently outperformed. It has been confirmed as an outstanding clustering algorithm throughout experimental trials.

  • PDF

Parallel Fuzzy Inference Method for Large Volumes of Satellite Images

  • Lee, Sang-Gu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제1권1호
    • /
    • pp.119-124
    • /
    • 2001
  • In this pattern recognition on the large volumes of remote sensing satellite images, the inference time is much increased. In the case of the remote sensing data [5] having 4 wavebands, the 778 training patterns are learned. Each land cover pattern is classified by using 159, 900 patterns including the trained patterns. For the fuzzy classification, the 778 fuzzy rules are generated. Each fuzzy rule has 4 fuzzy variables in the condition part. Therefore, high performance parallel fuzzy inference system is needed. In this paper, we propose a novel parallel fuzzy inference system on T3E parallel computer. In this, fuzzy rules are distributed and executed simultaneously. The ONE_To_ALL algorithm is used to broadcast the fuzzy input to the all nodes. The results of the MIN/MAX operations are transferred to the output processor by the ALL_TO_ONE algorithm. By parallel processing of the fuzzy rules, the parallel fuzzy inference algorithm extracts match parallelism and achieves a good speed factor. This system can be used in a large expert system that ha many inference variables in the condition and the consequent part.

  • PDF

Improvement of Three Mixture Fragrance Recognition using Fuzzy Similarity based Self-Organized Network Inspired by Immune Algorithm

  • Widyanto, M.R.;Kusumoputro, B.;Nobuhara, H.;Kawamoto, K.;Yoshida, S.;Hirota, K.
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.419-422
    • /
    • 2003
  • To improve the recognition accuracy of a developed artificial odor discrimination system for three mixture fragrance recognition, Fuzzy Similarity based Self-Organized Network inspired by Immune Algorithm (F-SONIA) is proposed. Minimum, average, and maximum values of fragrance data acquisitions are used to form triangular fuzzy numbers. Then the fuzzy similarity treasure is used to define the relationship between fragrance inputs and connection strengths of hidden units. The fuzzy similarity is defined as the maximum value of the intersection region between triangular fuzzy set of input vectors and the connection strengths of hidden units. In experiments, performances of the proposed method is compared with the conventional Self-Organized Network inspired by Immune Algorithm (SONIA), and the Fuzzy Learning Vector Quantization (FLVQ). Experiments show that F-SONIA improves recognition accuracy of SONIA by 3-9%. Comparing to the previously developed artificial odor discrimination system that used FLVQ as pattern classifier, the recognition accuracy is increased by 14-25%.

  • PDF

공작기계 지능화를 위한 다중 감시 시스템의 개발-드릴가공에의 적용- (Development of a Multiple Monitioring System for Intelligence of a Machine Tool -Application to Drilling Process-)

  • 김화영;안중환
    • 한국정밀공학회지
    • /
    • 제10권4호
    • /
    • pp.142-151
    • /
    • 1993
  • An intelligent mulitiple monitoring system to monitor tool/machining states synthetically was proposed and developed. It consists of 2 fundamental subsystems : the multiple sensor detection unit and the intellignet integrated diagnosis unit. Three signals, that is, spindle motor current, Z-axis motor current, and machining sound were adopted to detect tool/machining states more reliably. Based on the multiple sensor information, the diagnosis unit judges either tool breakage or degree of tool wear state using fuzzy reasoning. Tool breakage is diagnosed by the level of spindle/z-axis motor current. Tool wear is diagnosed by both the result of fuzzy pattern recognition for motor currents and the result of pattern matching for machining sound. Fuzzy c-means algorithm was used for fuzzy pattern recognition. Experiments carried out for drill operation in the machining center have shown that the developed system monitors abnormal drill/states drilling very reliably.

  • PDF