• Title/Summary/Keyword: Fuzzy Pattern Recognition

Search Result 194, Processing Time 0.025 seconds

Non-destructive evaluation and pattern recognition for SCRC columns using the AE technique

  • Du, Fangzhu;Li, Dongsheng
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.3
    • /
    • pp.173-190
    • /
    • 2019
  • Steel-confined reinforced concrete (SCRC) columns feature highly complex and invisible mechanisms that make damage evaluation and pattern recognition difficult. In the present article, the prevailing acoustic emission (AE) technique was applied to monitor and evaluate the damage process of steel-confined RC columns in a quasi-static test. AE energy-based indicators, such as index of damage and relax ratio, were proposed to trace the damage progress and quantitatively evaluate the damage state. The fuzzy C-means algorithm successfully discriminated the AE data of different patterns, validity analysis guaranteed cluster accuracy, and principal component analysis simplified the datasets. A detailed statistical investigation on typical AE features was conducted to relate the clustered AE signals to micro mechanisms and the observed damage patterns, and differences between steel-confined and unconfined RC columns were compared and illustrated.

An Interval Type-2 Fuzzy PCM Algorithm for Pattern Recognition (패턴인식을 위한 Interval Type-2 퍼지 PCM 알고리즘)

  • Min, Ji-Hee;Rhee, Frank Chung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.1
    • /
    • pp.102-107
    • /
    • 2009
  • The Possibilistic C-means(PCM) was proposed to overcome some of the drawbacks associated with the Fuzzy C-means(FCM) such as improved performance for noise data. However, PCM possesses some drawbacks such as sensitivity in initial parameter values and to patterns that have relatively short distances between the prototypes. To overcome these drawbacks, we propose an interval type 2 fuzzy approach to PCM by considering uncertainty in the fuzzy parameter m in the PCM algorithm.

Design of Optimized Pattern Recognizer by Means of Fuzzy Neural Networks Based on Individual Input Space (개별 입력 공간 기반 퍼지 뉴럴 네트워크에 의한 최적화된 패턴 인식기 설계)

  • Park, Keon-Jun;Kim, Yong-Kab;Kim, Byun-Gon;Hoang, Geun-Chang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.181-189
    • /
    • 2013
  • In this paper, we introduce the fuzzy neural network based on the individual input space to design the pattern recognizer. The proposed networks configure the network by individually dividing each input space. The premise part of the networks is independently composed of the fuzzy partition of individual input spaces and the consequence part of the networks is represented by polynomial functions. The learning of fuzzy neural networks is realized by adjusting connection weights of the neurons in the consequent part of the fuzzy rules and it follows a back-propagation algorithm. In addition, in order to optimize the parameters of the proposed network, we use real-coded genetic algorithms. Finally, we design the optimized pattern recognizer using the experimental data for pattern recognition.

Estimation of Concrete Strength Based on Artificial Intelligence Techniques (인공지능 기법에 의한 콘크리트 강도 추정)

  • 김세동;신동환;이영석;노승용;김성환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.7
    • /
    • pp.101-111
    • /
    • 1999
  • This paper presents concrete pattern recognition method to identify the strength of concrete by evidence accumulation with multiple parameters based on artificial intelligence techniques. At first, variance(VAR), zero-crossing(ZCR), mean frequency(MEANF), and autoregressive model coefficient(ARC) and linear cepstrum coefficient(LCC) are extracted as feature parameters from ultrasonic signal of concrete. Pattern recognition is carried out through the evidence accumulation procedure using distance measured with reference parameters. A fuzzy mapping function is designed to transform the distances for the application of the evidence accumulation method. Results(92% successful pattern recognition rate) are presented to support the feasibility of the suggested approach for concrete pattern recognition.

  • PDF

A recognition of hand written hangul by fuzzy inference

  • Song, Jeong-Young;Lee, Hee-Hyol;Akizuki, Kageo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1181-1185
    • /
    • 1991
  • Unlike printed character, the recognition of Hand written one has various kinds of difficulties due to the existence of the huge pattern associated with the person who writes. Therefore, in general, recognition of Hand written characters requires an algorithm which takes into consideration of the individual differences. Hangul characters are basically made of straight lines and circles. They can be represented in terms of feature parameters such as the end point of the straight line, the length and the angle. Then all Hangul characters can be represented by the number of basic segments(-, /, vertical bar, O) multiplied by the feature parameters respectively. In this study we propose a method for recognizing Hand written Hangul characters in terms of fuzzy inference.

  • PDF

On-line Korean Sing Language(KSL) Recognition using Fuzzy Min-Max Neural Network and feature Analysis

  • zeungnam Bien;Kim, Jong-Sung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.85-91
    • /
    • 1995
  • This paper presents a system which recognizes the Korean Sign Language(KSL) and translates into normal Korean speech. A sign language is a method of communication for the deaf-mute who uses gestures, especially both hands and fingers. Since the human hands and fingers are not the same in physical dimension, the same form of a gesture produced by two signers with their hands may not produce the same numerical values when obtained through electronic sensors. In this paper, we propose a dynamic gesture recognition method based on feature analysis for efficient classification of hand motions, and on a fuzzy min-max neural network for on-line pattern recognition.

  • PDF

A Neural Network Model and Its Learning Algorithm for Solving Fuzzy Relational Equations (퍼지 관계방정식의 해법을 위한 신경회로망 모델과 학습 방법)

  • ;Zeungnam Bien
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.10
    • /
    • pp.77-85
    • /
    • 1993
  • In this paper, we present a method to solve a convexly combined fuzzy relational equation with generalized connectives. For this, we propose a neural network whose structure represents the fuzzy relational equation. Then we derive a learning algorithm by using the concept of back-propagation learning. Since the proposed method can be used for a general form of fuzzy relational equations, such fuzzy max-min or min-max relational equations can be treated as its special cases. Moreover, the relational structure adopted in the proposed neurocomputational approach can work in a highly parallel manner so that real-time applications of fuzzy sets are possibles as in fuzzy logic controllers, knowledge-based systems, and pattern recognition systems.

  • PDF

A Possibilistic Based Perceptron Algorithm for Finding Linear Decision Boundaries (선형분류 경계면을 찾기 위한 Possibilistic 퍼셉트론 알고리즘)

  • Kim, Mi-Kyung;Rhee, Frank Chung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.14-18
    • /
    • 2002
  • The perceptron algorithm, which is one of a class of gradient descent techniques, has been widely used in pattern recognition to determine linear decision boundaries. However, it may not give desirable results when pattern sets are nonlinerly separable. A fuzzy version was developed to male up for the weaknesses in the crisp perceptron algorithm. This was achieved by assigning memberships to the pattern sets. However, still another drawback exists in that the pattern memberships do not consider class typicality of the patterns. Therefore, we propose a possibilistic approach to the crisp perceptron algorithm. This algorithm combines the linearly separable property of the crisp version and the convergence property of the fuzzy version. Several examples are given to show the validity of the method.

Movement Pattern Recognition of Medaka for an Insecticide: A Comparison of Decision Tree and Neural Network

  • Kim, Youn-Tae;Park, Dae-Hoon;Kim, Sung-Shin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.1
    • /
    • pp.58-65
    • /
    • 2007
  • Behavioral sequences of the medaka (Oryzias latipes) were continuously investigated through an automatic image recognition system in response to medaka treated with the insecticide and medaka not treated with the insecticide, diazinon (0.1 mg/l) during a 1 hour period. The observation of behavior through the movement tracking program showed many patterns of the medaka. After much observation, behavioral patterns were divided into four basic patterns: active-smooth, active-shaking, inactive-smooth, and inactive-shaking. The "smooth" and "shaking" patterns were shown as normal movement behavior. However, the "shaking" pattern was more frequently observed than the "smooth" pattern in medaka specimens that were treated with insecticide. Each pattern was classified using classification methods after the feature choice. It provides a natural way to incorporate prior knowledge from human experts in fish behavior and contains the information in a logical expression tree. The main focus of this study was. to determine whether the decision tree could be useful for interpreting and classifying behavior patterns of the medaka.

Dynamic Hand Gesture Recognition Using CNN Model and FMM Neural Networks (CNN 모델과 FMM 신경망을 이용한 동적 수신호 인식 기법)

  • Kim, Ho-Joon
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.2
    • /
    • pp.95-108
    • /
    • 2010
  • In this paper, we present a hybrid neural network model for dynamic hand gesture recognition. The model consists of two modules, feature extraction module and pattern classification module. We first propose a modified CNN(convolutional Neural Network) a pattern recognition model for the feature extraction module. Then we introduce a weighted fuzzy min-max(WFMM) neural network for the pattern classification module. The data representation proposed in this research is a spatiotemporal template which is based on the motion information of the target object. To minimize the influence caused by the spatial and temporal variation of the feature points, we extend the receptive field of the CNN model to a three-dimensional structure. We discuss the learning capability of the WFMM neural networks in which the weight concept is added to represent the frequency factor in training pattern set. The model can overcome the performance degradation which may be caused by the hyperbox contraction process of conventional FMM neural networks. From the experimental results of human action recognition and dynamic hand gesture recognition for remote-control electric home appliances, the validity of the proposed models is discussed.