• Title/Summary/Keyword: Fuzzy Pattern Recognition

Search Result 194, Processing Time 0.027 seconds

Development of a Multiple Monitioring System for Intelligence of a Machine Tool -Application to Drilling Process- (공작기계 지능화를 위한 다중 감시 시스템의 개발-드릴가공에의 적용-)

  • Kim, H.Y.;Ahn, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.142-151
    • /
    • 1993
  • An intelligent mulitiple monitoring system to monitor tool/machining states synthetically was proposed and developed. It consists of 2 fundamental subsystems : the multiple sensor detection unit and the intellignet integrated diagnosis unit. Three signals, that is, spindle motor current, Z-axis motor current, and machining sound were adopted to detect tool/machining states more reliably. Based on the multiple sensor information, the diagnosis unit judges either tool breakage or degree of tool wear state using fuzzy reasoning. Tool breakage is diagnosed by the level of spindle/z-axis motor current. Tool wear is diagnosed by both the result of fuzzy pattern recognition for motor currents and the result of pattern matching for machining sound. Fuzzy c-means algorithm was used for fuzzy pattern recognition. Experiments carried out for drill operation in the machining center have shown that the developed system monitors abnormal drill/states drilling very reliably.

  • PDF

An Enhanced Fuzzy ART Algorithm for The Effective Identifier Recognition From Shipping Container Image (효과적인 운송 컨테이너 영상의 식별자 인식을 위한 개선된 퍼지 ART 알고리즘)

  • 김광백
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5C
    • /
    • pp.486-492
    • /
    • 2003
  • The vigilance threshold of conventional fuzzy ART algorithm decide whether to permit the mismatch between any input pattern and stored pattern. If the vigilance threshold was large, despite of little difference among input and stored patterns, the input pattern may be classified to new category. On the other hand, if the vigilance threshold was small, the similarity between two patterns may be accepted in spite of lots of difference and the input pattern are classified to category of the stored pattern. Therefore, the vigilance threshold for the image recognition must be experientially set for the good result. Moreover, it may occur in the fuzzy ART algorithm that the information of stored patterns is lost in the weight-adjusting process and the rate of pattern recognition is dropped. In this paper, I proposed the enhanced fuzzy ART algorithm that supports the dynamical setting of the vigilance threshold using the generalized intersection operator of fuzzy logic and the weight value being adaptively set in proportional to the current weight change and the previous weight by reflecting the frequency of the selection of winner node. For the performance evaluation of the proposed method, we applied to the recognition of container identifiers from shipping container images. The experiment showed that the proposed method produced fewer clusters than conventional ART2 and fuzzy ART algorithm. and had tile higher recognition rate.

A Study on Partial Discharge Pattern Recognition Using Neuro-Fuzzy Techniques (Neuro-Fuzzy 기법을 이용한 부분방전 패턴인식에 대한 연구)

  • Park, Keon-Jun;Kim, Gil-Sung;Oh, Sung-Kwun;Choi, Won;Kim, Jeong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2313-2321
    • /
    • 2008
  • In order to develop reliable on-site partial discharge(PD) pattern recognition algorithm, the fuzzy neural network based on fuzzy set(FNN) and the polynomial network pattern classifier based on fuzzy Inference(PNC) were investigated and designed. Using PD data measured from laboratory defect models, these algorithms were learned and tested. Considering on-site situation where it is not easy to obtain voltage phases in PRPDA(Phase Resolved Partial Discharge Analysis), the measured PD data were artificially changed with shifted voltage phases for the test of the proposed algorithms. As input vectors of the algorithms, PRPD data themselves were adopted instead of using statistical parameters such as skewness and kurtotis, to improve uncertainty of statistical parameters, even though the number of input vectors were considerably increased. Also, results of the proposed neuro-fuzzy algorithms were compared with that of conventional BP-NN(Back Propagation Neural Networks) algorithm using the same data. The FNN and PNC algorithms proposed in this study were appeared to have better performance than BP-NN algorithm.

A Proposition of the Fuzzy Correlation Dimension for Speaker Recognition (화자인식을 위한 퍼지상관차원 제안)

  • Yoo, Byong-Wook;Kim, Chang-Seok;Park, Hyun-Sook
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.1
    • /
    • pp.115-122
    • /
    • 1999
  • In this paper, we confirmed that a speech signal is a chaos signal, and in order to use it as a speaker recognition parameter, analyzed chaos dimension. In order to raise speaker identification and pattern recognition, by making up the strange attractor involving an individual's vocal tract characteristics very well and applying fuzzy membership function to correlation dimension, we proposed fuzzy correlation dimension. By estimating the correlation of the points making up an attractor are limited according space dimension value, fuzzy correlation dimension absorbed the variation of the reference pattern attractor and test pattern attractor. Concerning fuzzy correlation dimension, by estimating the distance according to the average value of discrimination error per each speaker and reference pattern, investigated the validity of speaker recognition parameter.

  • PDF

Distance measure between intuitionistic fuzzy sets and its application to pattern recognition

  • Park, Jin-Han;Lim, Ki-Moon;Kwun, Young-Chel
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.556-561
    • /
    • 2009
  • In this paper, we propose new method to calculate the distance between intuitionistic fuzzy sets(IFSs) based on the three dimensional representation of IFSs and analyze the relations of similarity measure and distance measure of IFSs. Finally, we apply the proposed measures to pattern recognitions.

Improvement of Pattern Recognition Capacity of the Fuzzy ART with the Variable Learning (가변 학습을 적용한 퍼지 ART 신경망의 패턴 인식 능력 향상)

  • Lee, Chang Joo;Son, Byounghee;Hong, Hee Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.12
    • /
    • pp.954-961
    • /
    • 2013
  • In this paper, we propose a new learning method using a variable learning to improve pattern recognition in the FCSR(Fast Commit Slow Recode) learning method of the Fuzzy ART. Traditional learning methods have used a fixed learning rate in updating weight vector(representative pattern). In the traditional method, the weight vector will be updated with a fixed learning rate regardless of the degree of similarity of the input pattern and the representative pattern in the category. In this case, the updated weight vector is greatly influenced from the input pattern where it is on the boundary of the category. Thus, in noisy environments, this method has a problem in increasing unnecessary categories and reducing pattern recognition capacity. In the proposed method, the lower similarity between the representative pattern and input pattern is, the lower input pattern contributes for updating weight vector. As a result, this results in suppressing the unnecessary category proliferation and improving pattern recognition capacity of the Fuzzy ART in noisy environments.

A Virtual Robot Arm Control by EMG Pattern Recognition of Fuzzy-SOFM Method (가상 로봇 팔 제어를 위한 퍼지-SOFM 방식의 근전도 패턴인식)

  • 이정훈;정경권;이현관;엄기환
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.2
    • /
    • pp.9-16
    • /
    • 2003
  • We proposed a method of a virtual robot arm controlled by the EMG pattern recognition using an improved SOFM method. The proposed method is simple in that the EMG signals are used as SOFM's input directly without preprocessing but nevertheless input patterns are reliably classified and then used for fuzzy logic systems to automatically tune the neighborhood and the learning rate. In order to verify the effectiveness of the proposed method, we experimented on EMG pattern recognition of 6 movements from the shoulder, wrist, and elbow. Experimental results show that the proposed SOFM method has 21.7% higher recognition rate than the general SOFM method, the average number of learning iterations has been decreased, and then the virtual robot arm is controlled by EMG pattern recognition.

Ellipsoid Fuzzy-ART for Pattern Recognition Improvement (패턴인식을 위한 타원형 Fuzzy-ART)

  • 강성호;정성부;임중규;이현관;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.305-308
    • /
    • 2003
  • This paper proposed Ellipsoid Fuzzy-ART (Fuzzy-Adaptive Resonance Theory) for recognition performance improvement to use Mahalanobis distance. The suggested method uses Mahalanobis distance to decide pattern boundary region at vector space. In order to confirm the validity of proposed method, comparison of the performance has made between existing method and the proposed method through simulation.

  • PDF

Pattern Classification Model using LVQ Optimized by Fuzzy Membership Function (퍼지 멤버쉽 함수로 최적화된 LVQ를 이용한 패턴 분류 모델)

  • Kim, Do-Tlyeon;Kang, Min-Kyeong;Cha, Eui-Young
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.8
    • /
    • pp.573-583
    • /
    • 2002
  • Pattern recognition process is made up of the feature extraction in the pre-processing, the pattern clustering by training and the recognition process. This paper presents the F-LVQ (Fuzzy Learning Vector Quantization) pattern classification model which is optimized by the fuzzy membership function for the OCR(Optical Character Recognition) system. We trained 220 numeric patterns of 22 Hangul and English fonts and tested 4840 patterns whose forms are changed variously. As a result of this experiment, it is proved that the proposed model is more effective and robust than other typical LVQ models.

The Robust Pattern Recognition System for Flexible Manufacture Automation (유연 생산 자동화를 위한 Robust 패턴인식 시스템)

  • Wi, Young-Ryang;Kim, Mun-Hwa;Jang, Dong-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.2
    • /
    • pp.223-240
    • /
    • 1998
  • The purpose of this paper is to develop the pattern recognition system with a 'Robust' concept to be applicable to flexible manufacture automation in practice. The 'Robust' concept has four meanings as follows. First, pattern recognition is performed invariantly in case the object to be recognized is translated, scaled, and rotated. Second, it must have strong resistance against noise. Third, the completely learned system is adjusted flexibly regardless of new objects being added. Finally, it has to recognize objects fast. To develop the proposed system, contouring, spectral analysis and Fuzzy ART neural network are used in this study. Contouring and spectral analysis are used in preprocessing stage, and Fuzzy ART is used in object classification stage. Fuzzy ART is an unsupervised neural network for solving the stability-plasticity dilemma.

  • PDF