• Title/Summary/Keyword: Fuzzy Pattern Matching

Search Result 39, Processing Time 0.027 seconds

Fast Optimization by Queen-bee Evolution and Derivative Evaluation in Genetic Algorithms

  • Jung, Sung-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.310-315
    • /
    • 2005
  • This paper proposes a fast optimization method by combining queen-bee evolution and derivative evaluation in genetic algorithms. These two operations make it possible for genetic algorithms to focus on highly fitted individuals and rapidly evolved individuals, respectively. Even though the two operations can also increase the probability that genetic algorithms fall into premature convergence phenomenon, that can be controlled by strong mutation rates. That is, the two operations and the strong mutation strengthen exploitation and exploration of the genetic algorithms, respectively. As a result, the genetic algorithm employing queen-bee evolution and derivative evaluation finds optimum solutions more quickly than those employing one of them. This was proved by experiments with one pattern matching problem and two function optimization problems.

Study on Design of Fingerprint Recognition Embedded System using Neural Network

  • Kim, Dong Han;Kim, Jung Hoon;Lee, Sang Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.347-352
    • /
    • 2004
  • We generated blocks from the direction-extracted fingerprint during the pre-process of the fingerprint recognition algorithm and performed training by using the direction minutiae of each block as the input pattern of the neural network, so that we extracted the core points to use in the matching. Based on this, we designed the fingerprint recognition embedded system and tested it by using the control board and the serial communication to utilize it for a variety of application systems. As a result, we can verify the reliance satisfactorily.

Iris Recognition using Gabor Wavelet and Fuzzy LDA Method (가버 웨이블릿과 퍼지 선형 판별분석 기법을 이용한 홍채 인식)

  • Go Hyoun-Joo;Kwon Mann-Jun;Chun Myung-Geun
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.11
    • /
    • pp.1147-1155
    • /
    • 2005
  • This paper deals with Iris recognition as one of biometric techniques which is applied to identify a person using his/her behavior or congenital characteristics. The Iris of a human eye has a texture that is unique and time invariant for each individual. First, we obtain the feature vector from the 2D Iris pattern having a property of size invariant and using the fuzzy LDA which is further through four types of 2D Gabor wavelet. At the recognition process, we compute the similarity measure based on the correlation values. Here, since we use four different matching values obtained from four different directional Gabor wavelet and select the maximum value, it is possible to minimize the recognition error rate. To show the usefulness of the proposed algorithm, we applied it to a biometric database consisting of 300 Iris Patterns extracted from 50 subjects and finally got more higher than $90\%$ recognition rate.

Optimized KNN/IFCM Algorithm for Efficient Indoor Location (효율적인 실내 측위를 위한 최적화된 KNN/IFCM 알고리즘)

  • Lee, Jang-Jae;Song, Lick-Ho;Kim, Jong-Hwa;Lee, Seong-Ro
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.2
    • /
    • pp.125-133
    • /
    • 2011
  • For any pattern matching based algorithm in WLAN environment, the characteristics of signal to noise ratio(SNR) to multiple access points(APs) are utilized to establish database in the training phase, and in the estimation phase, the actual two dimensional coordinates of mobile unit(MU) are estimated based on the comparison between the new recorded SNR and fingerprints stored in database. As fingerprinting method, k-nearest neighbor(KNN) has been widely applied for indoor location in wireless location area networks(WLAN), but its performance is sensitive to number of neighbors k and positions of reference points(RPs). So intuitive fuzzy c-means(IFCM) clustering algorithm is applied to improve KNN, which is the KNN/IFCM hybrid algorithm presented in this paper. In the proposed algorithm, through KNN, k RPs are firstly chosen as the data samples of IFCM based on signal to noise ratio(SNR). Then, the k RPs are classified into different clusters through IFCM based on SNR. Experimental results indicate that the proposed KNN/IFCM hybrid algorithm generally outperforms KNN, KNN/FCM, KNN/PFCM algorithm when the locations error is less than 2m.

Similarity-based Dynamic Clustering Using Radar Reflectivity Data (퍼지모델을 이용한 유사성 기반의 동적 클러스터링)

  • Lee, Han-Soo;Kim, Su-Dae;Kim, Yong-Hyun;Kim, Sung-Shin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.219-222
    • /
    • 2011
  • There are number of methods that track the movement of an object or the change of state, such as Kalman filter, particle filter, dynamic clustering, and so on. Amongst these method, dynamic clustering method is an useful way to track cluster across multiple data frames and analyze their trend. In this paper we suggest the similarity-based dynamic clustering method, and verifies it's performance by simulation. Proposed dynamic clustering method is how to determine the same clusters for each continuative frame. The same clusters have similar characteristics across adjacent frames. The change pattern of cluster's characteristics in each time frame is throughly studied. Clusters in each time frames are matched against each others to see their similarity. Mamdani fuzzy model is used to determine similarity based matching algorithm. The proposed algorithm is applied to radar reflectivity data over time domain. We were able to observe time dependent characteristic of the clusters.

  • PDF

A Study on Multi Fault Detection for Turbo Shaft Engine Components of UAV Using Neural Network Algorithms

  • Kong, Chang-Duk;Ki, Ja-Young;Kho, Seong-Hee;Lee, Chang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.187-194
    • /
    • 2008
  • Because the types and severities of most engine faults are various and complex, it is not easy that the conventional model based fault detection approach like the GPA(Gas Path Analysis) method can monitor all engine fault conditions. Therefore this study proposed newly a diagnostic algorithm for isolating and diagnosing effectively the faulted components of the smart UAV propulsion system, which has been developed by KARI(Korea Aerospace Research Institute), using the fuzzy logic and the neural network algorithms. A precise performance model should be needed to perform the model-based diagnostics. The based engine performance model was developed using SIMULINK. For the work and mass flow matching between components of the steady-state simulation, the state-flow library was applied. The proposed steady-state performance model can simulate off-design point performance at various flight conditions and part loads, and in order to evaluate the steady-state performance model their simulation results were compared with manufacturer's performance deck data. According to comparison results, it was confirm that the steady-state model well agreed with the deck data within 3% in all flight envelop. The diagnosis procedure of the proposed diagnostic system has the following steps. Firstly after obtaining database of fault patterns through performance simulation, then secondly the diagnostic system was trained by the FFBP networks. Thirdly after analyzing the trend of the measuring parameters due to fault patterns, then fourthly faulted components were isolated using the fuzzy logic. Finally magnitudes of the detected faults were obtained by the trained neural networks. Because the detected faults have almost same as degradation values of the implanted fault pattern, it was confirmed that the proposed diagnostic system can detect well the engine faults.

  • PDF

A gene filtering method based on fuzzy pattern matching for whole genome microarray data analysis (마이크로어레이 데이터의 게놈수준 분석을 위한 퍼지 패턴 매칭에 의한 유전자 필터링 방법)

  • Lee, Seon-A;Lee, Geon-Myeong;Lee, Seung-Ju;Kim, Won-Jae;Kim, Yong-Jun;Bae, Seok-Cheol
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.145-148
    • /
    • 2007
  • 생명과학분야에서 마이크로어레이 기술은 세포에서의 RNA 발현 프로파일을 관찰할 수 있도록 함으로써 생명현상의 규명 및 약물개발 둥에서 분자수준의 생명현상에 대한 관찰과 분석이 가능 해지고 있다. 마이크로어레이 데이터분석에서는 특정한 처리나 과정에서 현저한 특성을 보이는 유전자를 식별하기 위한 분석뿐만 아니라 유전자 전체인 게놈수준에서의 분석도 이루어진다. 최근 유전자의 발현이 다양한 조절, 신호전달 및 대사경로에 의해서 영향을 받고 있다는 관점에서 게놈수준의 분석에 관심이 증가하고 있다. 약물반응 실험에서는 약물에 대한 게놈수준의 발현 프로파일을 관찰하는 것도 많은 정보를 제공할 수 있다. 약물실험에서는 대조군과 실험군들간에 관심 있는 상대적인 발현특성을 갖는 유전자군을 전체적으로 추출하는 것이 필요한 경우가 있다. 예를 들면 정상군은 두개의 실험군에 대해서 중간청도의 발현정도를 갖는 유전자군을 식별하는 분석을 하는 경우, 생물학적인 데이터의 특성상 절대값을 비교하는 방법으로는 유용한 유전자들을 효과적으로 식별해 낼 수 없다. 이 논문에서는 정상군과 실험군들의 발현정도값의 경향을 판단하기 위해서 각 유전자에 대해서 집단별 대표값을 선정하여 퍼지집합으로 집단의 값의 범위를 결정하고, 이를 이용하여 특정 패턴을 갖는 유전자들을 식별해내는 방법을 제안하고, 실제 데이터를 통해서 실험한 결과를 보인다.

  • PDF

Segmentation of MR Brain Image and Automatic Lesion Detection using Symmetry (뇌 자기공명영상의 분할 및 대칭성을 이용한 자동적인 병변인식)

  • 윤옥경;곽동민;김헌순;오상근;이성기
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.149-154
    • /
    • 1999
  • In anatomical aspects, magnetic resonance image offers more accurate information than other medical images such as X ray, ultrasonic and CT images. This paper introduces a method that segments and detects lesion for 2 dimensional axial MR brain images automatically. Image segmentation process consists of 2 stages. First stage extracts cerebrum region using thresholding and morphology. In the second stage, white matter, gray matter and cerebrospinal fluid in the cerebrum are extracted using FCM, We could improve processing time as removing uninterested region. Finally symmetry measure and anatomical Knowledge are used to detect lesion.

  • PDF

The Design and Implementation of Anomaly Traffic Analysis System using Data Mining

  • Lee, Se-Yul;Cho, Sang-Yeop;Kim, Yong-Soo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.4
    • /
    • pp.316-321
    • /
    • 2008
  • Advanced computer network technology enables computers to be connected in an open network environment. Despite the growing numbers of security threats to networks, most intrusion detection identifies security attacks mainly by detecting misuse using a set of rules based on past hacking patterns. This pattern matching has a high rate of false positives and can not detect new hacking patterns, which makes it vulnerable to previously unidentified attack patterns and variations in attack and increases false negatives. Intrusion detection and analysis technologies are thus required. This paper investigates the asymmetric costs of false errors to enhance the performances the detection systems. The proposed method utilizes the network model to consider the cost ratio of false errors. By comparing false positive errors with false negative errors, this scheme achieved better performance on the view point of both security and system performance objectives. The results of our empirical experiment show that the network model provides high accuracy in detection. In addition, the simulation results show that effectiveness of anomaly traffic detection is enhanced by considering the costs of false errors.