• Title/Summary/Keyword: Fuzzy Pattern Classifier

Search Result 70, Processing Time 0.026 seconds

Design of pRBFNNs Pattern Classifier-based Face Recognition System Using 2-Directional 2-Dimensional PCA Algorithm ((2D)2PCA 알고리즘을 이용한 pRBFNNs 패턴분류기 기반 얼굴인식 시스템 설계)

  • Oh, Sung-Kwun;Jin, Yong-Tak
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.195-201
    • /
    • 2014
  • In this study, face recognition system was designed based on polynomial Radial Basis Function Neural Networks(pRBFNNs) pattern classifier using 2-directional 2-dimensional principal component analysis algorithm. Existing one dimensional PCA leads to the reduction of dimension of image expressed by the multiplication of rows and columns. However $(2D)^2PCA$(2-Directional 2-Dimensional Principal Components Analysis) is conducted to reduce dimension to each row and column of image. and then the proposed intelligent pattern classifier evaluates performance using reduced images. The proposed pRBFNNs consist of three functional modules such as the condition part, the conclusion part, and the inference part. In the condition part of fuzzy rules, input space is partitioned with the aid of fuzzy c-means clustering. In the conclusion part of rules. the connection weight of RBFNNs is represented as the linear type of polynomial. The essential design parameters (including the number of inputs and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. Using Yale and AT&T dataset widely used in face recognition, the recognition rate is obtained and evaluated. Additionally IC&CI Lab dataset is experimented with for performance evaluation.

Recognition of Handwritten Numerals using Hybrid Features And Combined Classifier (복합 특징과 결합 인식기에 의한 필기체 숫자인식)

  • 박중조;송영기;김경민
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.1
    • /
    • pp.14-22
    • /
    • 2001
  • Off-line handwritten numeral recognition is a very difficult task and hard to achieve high recognition results using a single feature and a single classifier, since handwritten numerals contain many pattern variations which mostly depend upon individual writing styles. In this paper, we propose handwritten numeral recognition system using hybrid features and combined classifier. To improve recognition rate, we select mutually helpful features -directional features, crossing point feature and mesh features- and make throe new hybrid feature sets by using these features. These hybrid feature sets hold the local and global characteristics of input numeral images. And we implement combined classifier by combining three neural network classifiers to achieve high recognition rate, where fuzzy integral is used for multiple network fusion. In order to verify the performance of the proposed recognition system, experiments with the unconstrained handwritten numeral database of Concordia University, Canada were performed. As a result, our method has produced 97.85% of the recognition rate.

  • PDF

Implementation of Unsupervised Nonlinear Classifier with Binary Harmony Search Algorithm (Binary Harmony Search 알고리즘을 이용한 Unsupervised Nonlinear Classifier 구현)

  • Lee, Tae-Ju;Park, Seung-Min;Ko, Kwang-Eun;Sung, Won-Ki;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.354-359
    • /
    • 2013
  • In this paper, we suggested the method for implementation of unsupervised nonlinear classification using Binary Harmony Search (BHS) algorithm, which is known as a optimization algorithm. Various algorithms have been suggested for classification of feature vectors from the process of machine learning for pattern recognition or EEG signal analysis processing. Supervised learning based support vector machine or fuzzy c-mean (FCM) based on unsupervised learning have been used for classification in the field. However, conventional methods were hard to apply nonlinear dataset classification or required prior information for supervised learning. We solved this problems with proposed classification method using heuristic approach which took the minimal Euclidean distance between vectors, then we assumed them as same class and the others were another class. For the comparison, we used FCM, self-organizing map (SOM) based on artificial neural network (ANN). KEEL machine learning datset was used for simulation. We concluded that proposed method was superior than other algorithms.

Adaptive Data Mining Model using Fuzzy Performance Measures (퍼지 성능 측정자를 이용한 적응 데이터 마이닝 모델)

  • Rhee, Hyun-Sook
    • The KIPS Transactions:PartB
    • /
    • v.13B no.5 s.108
    • /
    • pp.541-546
    • /
    • 2006
  • Data Mining is the process of finding hidden patterns inside a large data set. Cluster analysis has been used as a popular technique for data mining. It is a fundamental process of data analysis and it has been Playing an important role in solving many problems in pattern recognition and image processing. If fuzzy cluster analysis is to make a significant contribution to engineering applications, much more attention must be paid to fundamental decision on the number of clusters in data. It is related to cluster validity problem which is how well it has identified the structure that Is present in the data. In this paper, we design an adaptive data mining model using fuzzy performance measures. It discovers clusters through an unsupervised neural network model based on a fuzzy objective function and evaluates clustering results by a fuzzy performance measure. We also present the experimental results on newsgroup data. They show that the proposed model can be used as a document classifier.

Hybrid Neural Classifier Combined with H-ART2 and F-LVQ for Face Recognition

  • Kim, Do-Hyeon;Cha, Eui-Young;Kim, Kwang-Baek
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1287-1292
    • /
    • 2005
  • This paper presents an effective pattern classification model by designing an artificial neural network based pattern classifiers for face recognition. First, a RGB image inputted from a frame grabber is converted into a HSV image which is similar to the human beings' vision system. Then, the coarse facial region is extracted using the hue(H) and saturation(S) components except intensity(V) component which is sensitive to the environmental illumination. Next, the fine facial region extraction process is performed by matching with the edge and gray based templates. To make a light-invariant and qualified facial image, histogram equalization and intensity compensation processing using illumination plane are performed. The finally extracted and enhanced facial images are used for training the pattern classification models. The proposed H-ART2 model which has the hierarchical ART2 layers and F-LVQ model which is optimized by fuzzy membership make it possible to classify facial patterns by optimizing relations of clusters and searching clustered reference patterns effectively. Experimental results show that the proposed face recognition system is as good as the SVM model which is famous for face recognition field in recognition rate and even better in classification speed. Moreover high recognition rate could be acquired by combining the proposed neural classification models.

  • PDF

Implementation of Pipeline Monitoring System Using Bio-memetic Robots (생체 모방 로봇을 이용한 관로 모니터링 시스템의 구현)

  • Shin, Dae-Jung;Na, Seung-You;Kim, Jin-Young;Jung, Joo-Hyun
    • The KIPS Transactions:PartA
    • /
    • v.17A no.1
    • /
    • pp.33-44
    • /
    • 2010
  • We present a pipeline monitoring system based on bio-memetic robot in this paper. A bio-memetic robot exploring pipelines measures temperature, humidity, and vibration. The principal function of pipeline monitoring robot for the exploring pipelines is to recognize the shape of pipelines. We use infrared distance sensor to recognize the shape of pipelines and potentiometer to measure the angle of motor mounting infrared distance sensor. For the shape recognition of pipelines, the number of detected pipelines is used during only one scanning of distance. Three fuzzy classifiers are used for the number of detected pipelines, and the classifying results are presented in this paper.

Design of Incremental FCM-based RBF Neural Networks Pattern Classifier for Processing Big Data (빅 데이터 처리를 위한 증분형 FCM 기반 RBF Neural Networks 패턴 분류기 설계)

  • Lee, Seung-Cheol;Oh, Sung-Kwun;Roh, Seok-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1343-1344
    • /
    • 2015
  • 본 연구에서는 증분형 FCM(Incremental Fuzzy C-Means: Incremental FCM) 클러스터링 알고리즘을 기반으로 방사형 기저함수 신경회로망(Radial Basis Function Neural Networks: RBFNN) 패턴 분류기를 설계한다. 방사형 기저함수 신경회로망은 조건부에서 가우시안 함수 또는 FCM을 사용하여 적합도를 구하였지만, 제안된 분류기에서는 빅 데이터간의 적합도를 구하기 위해 증분형 FCM을 사용한다. 또한, 빅 데이터를 학습하기 위해 결론부에서 재귀최소자승법(Recursive Least Square Estimation: RLSE)을 사용하여 다항식 계수를 추정한다. 마지막으로 추론부에서는 증분형 FCM에서 구한 적합도와 재귀최소자승법으로 구한 다항식을 이용하여 최종 출력을 구한다.

  • PDF

Extreme Learning Machine based Fuzzy Pattern Classifier for Face Recognition (얼굴인식을 위한 ELM 기반 퍼지 패턴분류기)

  • Oh, Sung-Kwun;Roh, Seok-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1369-1370
    • /
    • 2015
  • 본 논문에서는 얼굴 인식을 위하여 인공 신경망의 일종인 Extreme Learning Machine의 학습 알고리즘을 기반으로 하여 지능형 알고리즘인 퍼지 집합 이론을 이용하여 주변 노이즈에 매우 강한 특성을 보이며 학습 속도가 매우 빠른 새로운 패턴 분류기를 제안한다. 제안된 퍼지 패턴 분류기는 기존 신경회로망의 학습 속도에 비해 매우 빠른 학습 속도를 보이며, 패턴 분류기의 일반화 성능이 우수하다고 알려진 Extreme Learning Machine의 특성을 퍼지 집합 이론과 결합하여 퍼지 패턴 분류기의 일반화 성능을 개선하였다. 제안된 퍼지 패턴 분류기는 얼굴 인식 데이터를 이용하여 성능을 평가 하였다.

  • PDF

Emotional Human Body Recognition by Using Extraction of Human Body from Image (인간의 움직임 추출을 이용한 감정적인 행동 인식 시스템 개발)

  • Song, Min-Kook;Park, Jin-Bae;So, Je-Yoon;Joo, Young-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.348-351
    • /
    • 2006
  • 영상을 통한 감정 인식 기술은 사회의 여러 분야에서 필요성이 대두되고 있음에도 불구하고 인식 과정의 어려움으로 인해 풀리지 않는 문제로 남아 있다. 인간의 움직임을 이용한 감정 인식 기술은 많은 응용이 가능하기 때문에 개발의 필요성이 증대되고 있다. 영상을 통해 감정을 인식하는 시스템은 매우 다양한 기법들이 사용되는 복합적인 시스템이다. 본 논문에서는 이전에 연구된 움직임 추출 방법들을 바탕으로 한 새로운 감정 인식 시스템을 제안한다. 제안된 시스템은 은닉 마르코프 모델을 통해 동정된 분류기를 이용하여 감정을 인식한다. 제안된 시스템의 성능을 평가하기 위해 평가데이터 베이스가 구축되었으며, 이를 통해 제안된 감정 인식 시스템의 성능을 확인하였다.

  • PDF

Defects Classification with UT Signals in Pressure Vessel Weld by Fuzzy Theory (퍼지이론을 이용한 압력용기 용접부 초음파 결함 특성 분류)

  • Sim, C.M.;Choi, H.L.;Baik, H.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.1
    • /
    • pp.11-22
    • /
    • 1997
  • It is very essential to get the accurate classification of defects in primary pressure vessel and piping welds for the safety of nuclear power plant. Ultrasonic testing has been widely applied to inspect primary pressure vessel and piping welds of nuclear power plants during PSI / ISI. Classification of flaws in weldments from their ultrasonic scattering signals is very important in quantitative nondestructive evaluation. This problem is ideally suited to a modern ultrasonic Pattern recognition technique. Here, a brief discussion on systematic approach to this methodology is presented including ultrasonic feature extraction, feature selection and classification. A stronger emphasis is placed on Fuzzy-UTSCS (UT signal classification system) as efficient classifiers for many practical classification problems. As an example Fuzzy-UTSCS is applied to classify flaws in ferrite pressure vessel weldments into two types such as linear and volumetric. It is shown that Fuzzy-UTSCS is able to exhibit higher performance than other classifiers in the defect classification.

  • PDF