• Title/Summary/Keyword: Fuzzy Pattern Classification

Search Result 146, Processing Time 0.021 seconds

Selection Method of Fuzzy Partitions in Fuzzy Rule-Based Classification Systems (퍼지 규칙기반 분류시스템에서 퍼지 분할의 선택방법)

  • Son, Chang-S.;Chung, Hwan-M.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.360-366
    • /
    • 2008
  • The initial fuzzy partitions in fuzzy rule-based classification systems are determined by considering the domain region of each attribute with the given data, and the optimal classification boundaries within the fuzzy partitions can be discovered by tuning their parameters using various learning processes such as neural network, genetic algorithm, and so on. In this paper, we propose a selection method for fuzzy partition based on statistical information to maximize the performance of pattern classification without learning processes where statistical information is used to extract the uncertainty regions (i.e., the regions which the classification boundaries in pattern classification problems are determined) in each input attribute from the numerical data. Moreover the methods for extracting the candidate rules which are associated with the partition intervals generated by statistical information and for minimizing the coupling problem between the candidate rules are additionally discussed. In order to show the effectiveness of the proposed method, we compared the classification accuracy of the proposed with those of conventional methods on the IRIS and New Thyroid Cancer data. From experimental results, we can confirm the fact that the proposed method only considering statistical information of the numerical patterns provides equal to or better classification accuracy than that of the conventional methods.

Feature Selection of Fuzzy Pattern Classifier by using Fuzzy Mapping (퍼지 매핑을 이용한 퍼지 패턴 분류기의 Feature Selection)

  • Roh, Seok-Beom;Kim, Yong Soo;Ahn, Tae-Chon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.646-650
    • /
    • 2014
  • In this paper, in order to avoid the deterioration of the pattern classification performance which results from the curse of dimensionality, we propose a new feature selection method. The newly proposed feature selection method is based on Fuzzy C-Means clustering algorithm which analyzes the data points to divide them into several clusters and the concept of a function with fuzzy numbers. When it comes to the concept of a function where independent variables are fuzzy numbers and a dependent variable is a label of class, a fuzzy number should be related to the only one class label. Therefore, a good feature is a independent variable of a function with fuzzy numbers. Under this assumption, we calculate the goodness of each feature to pattern classification problem. Finally, in order to evaluate the classification ability of the proposed pattern classifier, the machine learning data sets are used.

The Design of Pattern Classification based on Fuzzy Combined Polynomial Neural Network (퍼지 결합 다항식 뉴럴 네트워크 기반 패턴 분류기 설계)

  • Rho, Seok-Beom;Jang, Kyung-Won;Ahn, Tae-Chon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.534-540
    • /
    • 2014
  • In this paper, we propose a fuzzy combined Polynomial Neural Network(PNN) for pattern classification. The fuzzy combined PNN comes from the generic TSK fuzzy model with several linear polynomial as the consequent part and is the expanded version of the fuzzy model. The proposed pattern classifier has the polynomial neural networks as the consequent part, instead of the general linear polynomial. PNNs are implemented by stacking the simple polynomials dynamically. To implement one layer of PNNs, the various types of simple polynomials are used so that PNNs have flexibility and versatility. Although the structural complexity of the implemented PNNs is high, the PNNs become a high order-multi input polynomial finally. To estimate the coefficients of a polynomial neuron, The weighted linear discriminant analysis. The output of fuzzy rule system with PNNs as the consequent part is the linear combination of the output of several PNNs. To evaluate the classification ability of the proposed pattern classifier, we make some experiments with several machine learning data sets.

On the Fuzzy Membership Function of Fuzzy Support Vector Machines for Pattern Classification of Time Series Data (퍼지서포트벡터기계의 시계열자료 패턴분류를 위한 퍼지소속 함수에 관한 연구)

  • Lee, Soo-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.6
    • /
    • pp.799-803
    • /
    • 2007
  • In this paper, we propose a new fuzzy membership function for FSVM(Fuzzy Support Vector Machines). We apply a fuzzy membership to each input point of SVM and reformulate SVM into fuzzy SVM (FSVM) such that different input points can make different contributions to the learning of decision surface. The proposed method enhances the SVM in reducing the effect of outliers and noises in data points. This paper compares classification and estimated performance of SVM, FSVM(1), and FSVM(2) model that are getting into the spotlight in time series prediction.

Feature Impact Evaluation Based Pattern Classification System

  • Rhee, Hyun-Sook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.11
    • /
    • pp.25-30
    • /
    • 2018
  • Pattern classification system is often an important component of intelligent systems. In this paper, we present a pattern classification system consisted of the feature selection module, knowledge base construction module and decision module. We introduce a feature impact evaluation selection method based on fuzzy cluster analysis considering computational approach and generalization capability of given data characteristics. A fuzzy neural network, OFUN-NET based on unsupervised learning data mining technique produces knowledge base for representative clusters. 240 blemish pattern images are prepared and applied to the proposed system. Experimental results show the feasibility of the proposed classification system as an automating defect inspection tool.

Application of KITSAT-3 Images: Automated Generation of Fuzzy Rules and Membership Functions for Land-cover Classification of KITSAT-3 Images

  • Park, Won-Kyu;Choi, Soon-Dal
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.48-53
    • /
    • 1999
  • The paper presents an automated method for generating fuzzy rules and fuzzy membership functions for pattern classification from training sets of examples and an application to the land-cover classification. Initially, fuzzy subspaces are created from the partitions formed by the minimum and maximum of individual feature values of each class. The initial membership functions are determined according to the generated fuzzy partitions. The fuzzy subspaces are further iteratively partitioned if the user-specified classification performance has not been archived on the training set. Our classifier was trained and tested on patterns consisting of the DN of each band, (XS1, XS2, XS3), extracted from KITSAT-3 multispectral scene. The result represents that our classification method has higher generalization power.

  • PDF

Design of Fuzzy k-Nearest Neighbors Classifiers based on Feature Extraction by using Stacked Autoencoder (Stacked Autoencoder를 이용한 특징 추출 기반 Fuzzy k-Nearest Neighbors 패턴 분류기 설계)

  • Rho, Suck-Bum;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.113-120
    • /
    • 2015
  • In this paper, we propose a feature extraction method using the stacked autoencoders which consist of restricted Boltzmann machines. The stacked autoencoders is a sort of deep networks. Restricted Boltzmann machines (RBMs) are probabilistic graphical models that can be interpreted as stochastic neural networks. In terms of pattern classification problem, the feature extraction is a key issue. We use the stacked autoencoders networks to extract new features which have a good influence on the improvement of the classification performance. After feature extraction, fuzzy k-nearest neighbors algorithm is used for a classifier which classifies the new extracted data set. To evaluate the classification ability of the proposed pattern classifier, we make some experiments with several machine learning data sets.

Tire Tread Pattern Classification Using Fuzzy Clustering Algorithm (퍼지 클러스터링 알고리즘을 이용한 타이어 접지면 패턴의 분류)

  • 강윤관;정순원;배상욱;김진헌;박귀태
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.44-57
    • /
    • 1995
  • In this paper GFI (Generalized Fuzzy Isodata) and FI (Fuzzy Isodata) algorithms are studied and applied to the tire tread pattern classification problem. GFI algorithm which repeatedly grouping the partitioned cluster depending on the fuzzy partition matrix is general form of GI algorithm. In the constructing the binary tree using GFI algorithm cluster validity, namely, whether partitioned cluster is feasible or not is checked and construction of the binary tree is obtained by FDH clustering algorithm. These algorithms show the good performance in selecting the prototypes of each patterns and classifying patterns. Directions of edge in the preprocessed image of tire tread pattern are selected as features of pattern. These features are thought to have useful information which well represents the characteristics of patterns.

  • PDF

Extraction of Classification Boundary for Fuzzy Partitions and Its Application to Pattern Classification (퍼지 분할을 위한 분류 경계의 추출과 패턴 분류에의 응용)

  • Son, Chang-S.;Seo, Suk-T.;Chung, Hwan-M.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.685-691
    • /
    • 2008
  • The selection of classification boundaries in fuzzy rule- based classification systems is an important and difficult problem. So various methods based on learning processes such as neural network, genetic algorithm, and so on have been proposed for it. In a previous study, we pointed out the limitation of the methods and discussed a method for fuzzy partitioning in the overlapped region on feature space in order to overcome the time-consuming when the additional parameters for tuning fuzzy membership functions are necessary. In this paper, we propose a method to determine three types of classification boundaries(i.e., non-overlapping, overlapping, and a boundary point) on the basis of statistical information of the given dataset without learning by extending the method described in the study. Finally, we show the effectiveness of the proposed method through experimental results applied to pattern classification problems using the modified IRIS and standard IRIS datasets.

Statistical Information-Based Hierarchical Fuzzy-Rough Classification Approach (통계적 정보기반 계층적 퍼지-러프 분류기법)

  • Son, Chang-S.;Seo, Suk-T.;Chung, Hwan-M.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.6
    • /
    • pp.792-798
    • /
    • 2007
  • In this paper, we propose a hierarchical fuzzy-rough classification method based on statistical information for maximizing the performance of pattern classification and reducing the number of rules without learning approaches such as neural network, genetic algorithm. In the proposed method, statistical information is used for extracting the partition intervals of antecedent fuzzy sets at each layer on hierarchical fuzzy-rough classification systems and rough sets are used for minimizing the number of fuzzy if-then rules which are associated with the partition intervals extracted by statistical information. To show the effectiveness of the proposed method, we compared the classification results(e.g. the classification accuracy and the number of rules) of the proposed with those of the conventional methods on the Fisher's IRIS data. From the experimental results, we can confirm the fact that the proposed method considers only statistical information of the given data is similar to the classification performance of the conventional methods.