• Title/Summary/Keyword: Fuzzy Pattern

Search Result 539, Processing Time 0.027 seconds

Comparison of Fuzzy Classifiers Based on Fuzzy Membership Functions : Applies to Satellite Landsat TM Image

  • Kim Jin Il;Jeon Young Joan;Choi Young Min
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.842-845
    • /
    • 2004
  • The aim of this study is to compare the classification results for choosing the fuzzy membership function within fuzzy rules. There are various methods of extracting rules from training data in the process of fuzzy rules generation. Pattern distribution characteristics are considered to produce fuzzy rules. The accuracy of classification results are depended on not only considering the characteristics of fuzzy subspaces but also choosing the fuzzy membership functions. This paper shows how to produce various type of fuzzy rules from the partitioning the pattern spaces and results of land cover classification in satellite remote sensing images by adopting various fuzzy membership functions. The experiments of this study is applied to Landsat TM image and the results of classification are compared by fuzzy membership functions.

  • PDF

A Construction of Fuzzy Model for Data Mining (데이터 마이닝을 위한 퍼지 모델 동정)

  • Kim, Do-Wan;Park, Jin-Bae;Kim, Jung-Chan;Joo, Young-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.191-194
    • /
    • 2002
  • In this paper, a new GA-based methodology with information granules is suggested for construction of the fuzzy classifier. We deal with the selection of the fuzzy region as well as two major classification problems-the feature selection and the pattern classification. The proposed method consists of three steps: the selection of the fuzzy region, the construction of the fuzzy sets, and the tuning of the fuzzy rules. The genetic algorithms (GAs) are applied to the development of the information granules so as to decide the satisfactory fuzzy regions. Finally, the GAs are also applied to the tuning procedure of the fuzzy rules in terms of the management of the misclassified data (e.g., data with the strange pattern or on the boundaries of the classes). To show the effectiveness of the proposed method, an example-the classification of the Iris data, is provided.

A Pattern Classification of HDD (Hard Disk Drive) Defect Distribution Using Fuzzy Inference (퍼지 추론을 이용한 HDD (Hard Disk Drive) 결함 분포의 패턴 분류)

  • Moon Un-Chul;Kwon Hyun-Tae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.6
    • /
    • pp.383-389
    • /
    • 2005
  • This paper proposes a pattern classification algorithm for the defect distribution of Hard Disk Drive (HDD). In the HDD production, the defect pattern of defective HDD set is important information to diagnosis of defective HDD set. In this paper, 5 characteristics are determined for the classification to six standard defect pattern classes. A fuzzy inference system is proposed, the inputs of which are 5 characteristic values and the outputs are the possibilities that the input pattern is classified to standard patterns. Therefore, classification result is the pattern with maximum possibility. The proposed algorithm is implemented with the PC system for defective HDD sets and shows its effectiveness.

Hybrid of the fuzzy logic controller with the harmony search algorithm to PWR in-core fuel management optimization

  • Mahmoudi, Sayyed Mostafa;Rad, Milad Mansouri;Ochbelagh, Dariush Rezaei
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3665-3674
    • /
    • 2021
  • One of the important parts of the in-core fuel management is loading pattern optimization (LPO). The loading pattern optimization as a reasonable design of the in-core fuel management can improve both economic and safe aspects of the nuclear reactor. This work proposes the hybrid of fuzzy logic controller with harmony search algorithm (HS) for loading pattern optimization in a pressurized water reactor. The music improvisation process to find a pleasing harmony is inspiring the harmony search algorithm. In this work, the adjustment of the harmony search algorithm parameters such as the bandwidth and the pitch adjustment rate are increasing performance of the proposed algorithm which is done through a fuzzy logic controller. Hence, membership functions and fuzzy rules are designed to improve the performance of the HS algorithm and achieve optimal results. The objective of the method is finding an optimum core arrangement according to safety and economic aspects such as reduction of power peaking factor (PPF) and increase of effective multiplication factor (Keff). The proposed approach effectiveness has been tried in two cases, Michalewicz's bivariate function problem and NEACRP LWR core. The results show that by using fuzzy harmony search algorithm the value of the fitness function is improved by 15.35%. Finally, with regard to the new solutions proposed in this research it could be used as a trustworthy method for other optimization issues of engineering field.

Distance measure between intuitionistic fuzzy sets and its application to pattern recognition

  • Park, Jin-Han;Lim, Ki-Moon;Kwun, Young-Chel
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.556-561
    • /
    • 2009
  • In this paper, we propose new method to calculate the distance between intuitionistic fuzzy sets(IFSs) based on the three dimensional representation of IFSs and analyze the relations of similarity measure and distance measure of IFSs. Finally, we apply the proposed measures to pattern recognitions.

Fuzzy Patterns of Economic Valuating on the Architectural Aesthetic - Case Study of Applying the Fuzzy-Contingent Valuation Method to the Dongdaemoon Design Plaza - (건축미의 경제적 가치 퍼지패턴 분석)

  • Lee, Dong-Joo;Ko, Eun-Hyung
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.36 no.3
    • /
    • pp.13-20
    • /
    • 2020
  • The purpose of this study is to analyze the fuzzy pattern that is reflected on the inside of the value evaluator in measuring the economic value of architectural aesthetic using the fuzzy-contingent valuation method. The main results of analyzing the relationship between architectural aesthetic and fuzzy patterns by typing 307 fuzzy patterns collected from visitors at Dongdaemun Design Plaza are as follows: First, low levels of architectural aesthetic can be a primary cause of extreme refusal of payment. However, it was confirmed that the extreme refusal of payment could partially involve mentality of free-ride on public goods or mentality that would not give value to past events that are not future. Second, if the architectural aesthetic score is 77.5, the most perfect form of fuzzy pattern is formed. It is confirmed that the fuzzy form, which is the standard in the relationship between architectural aesthetic and money value, is made at 77.5 points. This means that it is most efficient to have 77.5 points of architectural aesthetic to secure balanced data by membership in the study of architectural aesthetic value measurement through fuzzy pattern. Third, according to the architectural aesthetic score, respondents can be interpreted as follows: no monetary willingness arises before or after 52.4, starts to respond to the amount before and after 65.6, severe conflict over payments around 70.6~71.7, stronger willingness to pay around 77.6, want to pay for sure around 80.0.

Design of Fuzzy Neural Networks Based on Fuzzy Clustering with Uncertainty (불확실성을 고려한 퍼지 클러스터링 기반 퍼지뉴럴네트워크 설계)

  • Park, Keon-Jun;Kim, Yong-Kab;Hoang, Geun-Chang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.1
    • /
    • pp.173-181
    • /
    • 2017
  • As the industries have developed, a myriad of big data have been produced and the inherent uncertainty in the data has also increased accordingly. In this paper, we propose an interval type-2 fuzzy clustering method to deal with the inherent uncertainty in the data and, using this method, design and optimize the fuzzy neural network. Fuzzy rules using the proposed clustering method are designed and carried out the learning process. Genetic algorithms are used as an optimization method and the model parameters are optimally explored. Experiments were performed with two pattern classification, both of the experiments show the superior pattern recognition results. The proposed network will be able to provide a way to deal with the uncertainty increasing.

Fuzzy Web Usage Mining for User Modeling

  • Jang, Jae-Sung;Jun, Sung-Hae;Oh, Kyung-Whan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.204-209
    • /
    • 2002
  • The interest of data mining in artificial intelligence with fuzzy logic has been increased. Data mining is a process of extracting desirable knowledge and interesting pattern ken large data set. Because of expansion of WWW, web data is more and more huge. Besides mining web contents and web structures, another important task for web mining is web usage mining which mines web log data to discover user access pattern. The goal of web usage mining in this paper is to find interesting user pattern in the web with user feedback. It is very important to find user's characteristic fer e-business environment. In Customer Relationship Management, recommending product and sending e-mail to user by extracted users characteristics are needed. Using our method, we extract user profile from the result of web usage mining. In this research, we concentrate on finding association rules and verify validity of them. The proposed procedure can integrate fuzzy set concept and association rule. Fuzzy association rule uses given server log file and performs several preprocessing tasks. Extracted transaction files are used to find rules by fuzzy web usage mining. To verify the validity of user's feedback, the web log data from our laboratory web server.

The Classification of Tool Wear States Using Pattern Recognition Technique (패턴인식기법을 이용한 공구마멸상태의 분류)

  • Lee, Jong-Hang;Lee, Sang-Jo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1783-1793
    • /
    • 1993
  • Pattern recognition technique using fuzzy c-means algorithm and multilayer perceptron was applied to classify tool wear states in turning. The tool wear states were categorized into the three regions 'Initial', 'Normal', 'Severe' wear. The root mean square(RMS) value of acoustic emission(AE) and current signal was used for the classification of tool wear states. The simulation results showed that a fuzzy c-means algorithm was better than the conventional pattern recognition techniques for classifying ambiguous informations. And normalized RMS signal can provide good results for classifying tool wear. In addition, a fuzzy c-means algorithm(success rate for tool wear classification : 87%) is more efficient than the multilayer perceptron(success rate for tool wear classification : 70%).

Development of an Adaptive Neuro-Fuzzy Techniques based PD-Model for the Insulation Condition Monitoring and Diagnosis

  • Kim, Y.J.;Lim, J.S.;Park, D.H.;Cho, K.B.
    • Electrical & Electronic Materials
    • /
    • v.11 no.11
    • /
    • pp.1-8
    • /
    • 1998
  • This paper presents an arificial neuro-fuzzy technique based prtial discharge (PD) pattern classifier to power system application. This may require a complicated analysis method employ -ing an experts system due to very complex progressing discharge form under exter-nal stress. After referring briefly to the developments of artificical neural network based PD measurements, the paper outlines how the introduction of new emerging technology has resulted in the design of a number of PD diagnostic systems for practical applicaton of residual lifetime prediction. The appropriate PD data base structure and selection of learning data size of PD pattern based on fractal dimentsional and 3-D PD-normalization, extraction of relevant characteristic fea-ture of PD recognition are discussed. Some practical aspects encountered with unknown stress in the neuro-fuzzy techniques based real time PD recognition are also addressed.

  • PDF