• 제목/요약/키워드: Fuzzy Parameter Tuning

검색결과 107건 처리시간 0.077초

The Vibration Suppressible Method with Estimated Torsion Torque Feedback in Fuzzy Controller

  • Choo, Yeon-Gyu;Lee, Kwang-Seok;Kim, Hyun-Deok;Kim, Bong-Gi
    • Journal of information and communication convergence engineering
    • /
    • 제6권4호
    • /
    • pp.421-424
    • /
    • 2008
  • In torque transmission system, we must suppressed vibration for Accuracy characteristic response of motor, Therefore, vibration suppression factor is very important motor control. To suppress vibration, a various control method has been proposed. Specially, one method of vibration suppression used disturbance observer filter. This method is torsion torque passing disturbance observer filter. By the estimated torsion torque feedback, vibration can be suppressed. The CDM(coefficient diagram method) is used to design the filter and Proportional controller. But using coefficient diagram method, not adapted controller parameter in disturbance. For this solution, we used fuzzy controller for auto tuning controller parameter. We proved this approach is confirmed by simulation.

스왐기반 퍼지시스템을 이용한 코크오븐 연소제어 모델링 (A combustion control modeling of coke oven by Swarm-based fuzzy system)

  • 고언태;황석균;이진수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.493-495
    • /
    • 2005
  • This paper proposes a swarm-based fuzzy system modeling technique for coke oven combustion control diagnosis. The coke plant produces coke for the blast furnace plant in steel making process by charging coal into oven and supplying gas to carbonize it. A conventional mathematical model for coke oven combustion control has been used to control the amount of gas input, but it does not work well because of highly nonlinear feature of coke plant. To solve this problem, swarm-based fuzzy system modeling technique is suggested to construct a diagnosis model of coke oven combustion control. Based on the measured input-output data pairs, the fuzzy rules are generated and the parameters are tuned by the PSO(Particle Swarm Optimizer) to increase the accuracy of the fuzzy system is operated. This system computes the proper amount of gas input taking the operation conditions of coke oven into account, and compares the computed result with the supplied gas input.

  • PDF

전력설비시스템을 위한 퍼지 평가함수와 신경회로망을 사용한 PID제어기의 자동동조 (An Auto-tuning of PID Controller using Fuzzy Performance Measure and Neural Network for Equipment System)

  • 이수흠;;박현태;이내일
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제13권2호
    • /
    • pp.195-195
    • /
    • 1999
  • This paper is Proposed a new method to deal with the optimized auto-tuning for the PID controller which is used to the process-control in various fields. First of all, in this method, 1st order delay system with dead time which is modelled from the unit step response of the system is Pade-approximated, then initial values are determined by the Ziegler-Nickels method. So we can find the parameters of PID controller so as to minimize the fuzzy criterion function which includes the maximum overshoot, damping ratio, rising time and settling time. Finally, after studying the parameters of PID controller by Backpropagation of Neural-Network, when we give new K, L, T values to Neural-Network, the optimized parameter of PID controller is found by Neural-Network Program.

Deadzone Compensation of Positioning Systems using Fuzzy Logic

  • Minkyong Son;Jang, Jun-Oh;Lee, Pyeong-Gi;Park, Sang-Bae;Ahn, In-Seok;Lee, Sung-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.102.4-102
    • /
    • 2002
  • A deadzone compensator is designed for a positioning system using fuzzy logic. The classification property of fuzzy logic systems make them a natural candidate for the rejection of errors induced by the deadzone, which has regions in which it behaves differently. A tuning algorithm is given for the fuzzy logic parameters, so that the deadzone compensation scheme becomes adaptive, guaranteeing small tracking errors and bounded parameter estimates, formal nonlinear stability proofs are given to show that the tracking error is small. The fuzzy logic deadzone compensator is implemented on a positioning system to show its efficacy. 1. Deadzone Compansation 2. XY positioning table 3. Fuzzy Logic 4. Actuator nonlinearity

  • PDF

XY 테이블의 퍼지 데드존 보상 (Deadzone compensation of a XY table using fuzzy logic)

  • 장준오
    • 전자공학회논문지SC
    • /
    • 제41권2호
    • /
    • pp.17-28
    • /
    • 2004
  • 퍼지논리를 이용한 XY 테이블의 데드존 보상기법을 제안한다. 퍼지논리 함수의 분류특성은 다양한 영역을 가진 데드존에 의해 유발되는 오차를 제거하기 위한 보상기 설계를 가능케 한다. 데드존 보상이 적응적이고 추적오차와 파라미터 추정치가 유계가 되는 퍼지논리 파라미터 동조알고리듬과 안정도 증명을 제시한다. 퍼지논리 데드존 보상기를 위치 테이블에 실험함으로써 데드존의 해로운 영향을 줄이는 효과를 보여준다.

유전자 알고리즘을 이용한 파라미터 추정모드기반 하이브리드 퍼지 제어기의 설계 (The Design of Hybrid Fuzzy Controller Based on Parameter Estimation Mode Using Genetic Algorithms)

  • 이대근;오성권;장성환
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.228-231
    • /
    • 2000
  • A hybrid fuzzy controller by means of the genetic algorithms is presented. The control input for the system in the HFC is a convex combination of the FLC's output in transient state and PlD's output in steady state by a fuzzy variable. The HFC combined a PID controller with a fuzzy controller concurrently produces the better output performance than any other controller. A auto-tuning algorithms is presented to automatically improve the performance of hybrid fuzzy controller using genetic algorithms. The algorithms estimates automatical Iy the optimal values of scaling factors, PID parameters and membership function parameters of fuzzy control rules. Especially, in order to auto-tune scaling factors and PID parameters of HFC using GA three kinds of estimation modes are effectively utilized. The HFCs are applied to the second process with time-delay. Computer simulations are conducted at step input and the performances of systems are evaluated and also discussed in ITAE(Integral of the Time multiplied by the Absolute value of Error ) and other ways.

  • PDF

설비시스템을 위한 소속함수 폭의 자동동조를 사용한 뉴로퍼지 제어기 (A Neuro Fuzzy Controller Using Auto-tuning Width of Membership Function for Equipment Systems)

  • 이수흠;방근태
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제11권2호
    • /
    • pp.102-109
    • /
    • 1997
  • 전력부하 설비시스템에 장치하는 퍼지제어기의 성능은 제어대상의 변화에 민감하여 제어대상이 바뀔때마다 퍼지 소속함수폭이나 제어규칙을 조정해야 한다. 본 논문은 퍼지제어기의 성능에 영향을 미치는 요소들을 종합적으로 고찰하여, 제어대상의 변화에 적응하여 최적의 퍼지 소속함수폭에 자동동조하는 다층 신경회로망을 사용한 성능이 개선된 뉴로퍼지제어기를 제안하여 구성하였다. 이것을 다양한 일차지연요소를 갖는 설비시스템의 시뮬fp에션을 하여 우수한 제어 특성을 확인하였다.

  • PDF

자기조정 뉴로-퍼지제어기를 이용한 다지역 전력시스템의 부하주파수 제어 (Load Frequency Control of Multi-area Power System using Auto-tuning Neuro-Fuzzy Controller)

  • 정형환;김상효;주석민;허동렬;이권순
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제49권3호
    • /
    • pp.95-106
    • /
    • 2000
  • The load frequency control of power system is one of important subjects in view of system operation and control. That is even though the rapid load disturbances were applied to the given power system, the stable and reliable power should be supplied to the users, converging unconditionally and rapidly the frequency deviations and the tie-line power flow one on each area into allowable boundary limits. Nonetheless of such needs, if the internal parameter perturbation and the sudden load variation were given, the unstable phenomenal of power system can be often brought out because of the large frequency deviation and the unsuppressible power line one. Therefore, it is desirable to design the robust neuro-fuzzy controller which can stabilize effectively the given power system as soon as possible. In this paper the robust neuro-fuzzy controller was proposed and applied to control of load frequency over multi-area power system. The architecture and algorithm of a designed NFC(Neuro-Fuzzy Controller) were consist of fuzzy controller and neural network for auto tuning of fuzzy controller. The adaptively learned antecedent and consequent parameters of membership functions in fuzzy controller were acquired from the steepest gradient method for error-back propagation algorithm. The performances of the resultant NFC, that is, the steady-state deviations of frequency and tie-line power flow and the related dynamics, were investigated and analyzed in detail by being applied to the load frequency control of multi-area power system, when the perturbations of predetermined internal parameters. Through the simulation results tried variously in this paper for disturbances of internal parameters and external stepwise load stepwise load changes, the superiorities of the proposed NFC in robustness and adaptive rapidity to the conventional controllers were proved.

  • PDF

콜러스터링 퍼지알고리즘을 이용한 영구자석 동기전동기 구동용 PI 제어기 설계 (PI Controller Design for Permanent Magnet Synchronous Motor Drives Using Clustering Fuzzy Algorithm)

  • 권정진;한우용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.182-184
    • /
    • 2004
  • This paper presents a PI controller tuning method for high performance permanent magnet synchronous motor (PMSM) drives under load variations using clustering fuzzy algorithm. In many speed tracking control systems PI controller has been used due to its simple structure and easy of design. PI controller, however, suffers from the electrical machine parameter variations and disturbances. In order to improve the tracking control performance under load variations, the PI controller parameters are modified during operation by clustering fuzzy method. This method based on optimal fuzzy logic system has simple structure and computational simplicity. It needs only sample data which is obtained by optimal controller off-line. As the sample data implemented in the adaptive fuzzy system can be modified or extended, a flexible control system can be obtained Simulation results show the usefulness of the proposed controller.

  • PDF

병렬유전자 알고리즘을 기반으로한 퍼지 시스템의 동정 (Identification of Fuzzy System Driven to Parallel Genetic Algorithm)

  • 최정내;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.201-203
    • /
    • 2007
  • The paper concerns the successive optimization for structure and parameters of fuzzy inference systems that is based on parallel Genetic Algorithms (PGA) and information data granulation (IG). PGA is multi, population based genetic algorithms, and it is used tu optimize structure and parameters of fuzzy model simultaneously, The granulation is realized with the aid of the C-means clustering. The concept of information granulation was applied to the fuzzy model in order to enhance the abilities of structural optimization. By doing that, we divide the input space to form the premise part of the fuzzy rules and the consequence part of each fuzzy rule is newly' organized based on center points of data group extracted by the C-Means clustering, It concerns the fuzzy model related parameters such as the number of input variables to be used in fuzzy model. a collection of specific subset of input variables, the number of membership functions according to used variables, and the polynomial type of the consequence part of fuzzy rules, The simultaneous optimization mechanism is explored. It can find optimal values related to structure and parameter of fuzzy model via PGA, the C-means clustering and standard least square method at once. A comparative analysis demonstrates that the Dnmosed algorithm is superior to the conventional methods.

  • PDF