• 제목/요약/키워드: Fuzzy Neural Network (FNN)

검색결과 141건 처리시간 0.027초

Multi-step Predictive Control of LMTT using DR-FNN

  • Lee, Jin-Woo;Lee, Young-Jin;Lee, Kwon-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.392-395
    • /
    • 2003
  • In the maritime container terminal, LMTT (Linear Motor-based Transfer Technology) is horizontal transfer system for the yard automation, which has been proposed to take the place of AGV (Automated Guided Vehicle). The system is based on PMLSM (Permanent Magnetic Linear Synchronous Motor) that is consists of stator modules on the rail and shuttle car (mover). Because of large variant of mover's weight by loading and unloading containers, the difference of each characteristic of stator modules, and a stator module's trouble etc., LMCPS (Linear Motor Conveyance Positioning System) is considered as that the system is changed its model suddenly and variously. In this paper, we will introduce the soft-computing method of a multi-step prediction control for LMCPS using DR-FNN (Dynamically-constructed Recurrent Fuzzy Neural Network). The proposed control system is used two networks for multi-step prediction. Consequently, the system has an ability to adapt for external disturbance, cogging force, force ripple, and sudden changes of itself.

  • PDF

A Study on Moldability by Using Fuzzy Logic Based Neural Network(FNN)

  • Kang, Seong Nam;Huh, Yong Jeong;Cho, Hyun Chan;Choi, Man Sung
    • 반도체디스플레이기술학회지
    • /
    • 제2권1호
    • /
    • pp.7-9
    • /
    • 2003
  • In order to predict the moldability of an injection molded part, a simulation of filling is needed. Short shot is one of the most frequent troubles encountered during injection molding process. The adjustment of process conditions is the most economic way to troubleshoot the problematic short shot in cost and time since the mold doesn't need to be modified at all. But it is difficult to adjust the process conditions appropriately in no times since it requires an empirical knowledge of injection molding. In this paper, the intelligent CAE system synergistically combines fuzzy-neural network(FNN) for heuristic knowledge with CAE programs for analytical knowledge. To evaluate the intelligent algorithms, a cellular phone flip has been chosen as a finite element model and filling analyses have been performed with a commercial CAE software. As the results, the intelligent CAE system drastically reduces the troubleshooting time of short shot in comparison with the expert's conventional way which is similar to the golden section search algorithm.

  • PDF

A Study on Moldability by Using Fuzzy Logic Based Neural Network(FNN)

  • Kang, Seong Nam;Huh, Yong Jeong;Choi, Man Sung
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2002년도 추계학술대회 발표 논문집
    • /
    • pp.127-129
    • /
    • 2002
  • In order to predict the moldability of an injection molded part, a simulation of filling is needed. Short shot is one of the most frequent troubles encountered during injection molding process. The adjustment of process conditions is the most economic way to troubleshoot the problematic short shot in cost and time since the mold doesn't need to be modified at all. But it is difficult to adjust the process conditions appropriately in no times since it requires an empirical knowledge of injection molding. In this paper, the intelligent CAE system synergistically combines fuzzy-neural network(FNN) for heuristic knowledge with CAE programs for analytical knowledge. To evaluate the intelligent algorithms, a cellular phone flip has been chosen as a finite element model and filling analyses have been performed with a commercial CAE software. As the results, the intelligent CAE system drastically reduces the troubleshooting time of short shot in comparison with the expert's conventional way which is similar to the golden section search algorithm.

  • PDF

HAI 제어기반 SV PWM 방식을 이용하나 IPMSM의 고성능 제어 (High Performance Control of IPMSM using SV-PWM Method Based on HAI Controller)

  • 최정식;고재섭;정동화
    • 조명전기설비학회논문지
    • /
    • 제23권8호
    • /
    • pp.33-40
    • /
    • 2009
  • 본 논문에서는 HAI(Hybrid Artificial Intelligent) 제어기반의 SV PWM 방식을 이용한 IPMSM의 고성능 제어를 제시한다. HAI 제어기는 적응 퍼지제어 및 신경회로망의 장점을 혼합 적용한다. SV PWM 방식은 지금까지 산업용 전동기 제어분야에 적용되고 있고 출력전류의 고조파 비율, 스위칭 주파수 및 응답특성을 향상시키는 수 있는 기법이다. HAI 제어기는 지령전압을 계산할 때 발생되는 문제점을 해결하기 위하여 종래의 PI 제어기를 대체하여 사용한다. HAI 제어기는 지령모델 기반의 적응제어, 퍼지제어 및 신경회로망으로 구성되어 속도 성능을 개선한다. 본 논문에서는 제시한 HAI 제어기를 적용하여 파라미터 변동, 정상상태 및 과도상태 등의 응답특성을 분석하고 종래의 FNN 제어기 및 PI 제어기의 응답특성과 비교한다. 따라서 본 논문에서는 HAI 제어기의 타당성을 입증한다.

Self-Evolving Expert Systems based on Fuzzy Neural Network and RDB Inference Engine

  • Kim, Jin-Sung
    • 지능정보연구
    • /
    • 제9권2호
    • /
    • pp.19-38
    • /
    • 2003
  • In this research, we propose the mechanism to develop self-evolving expert systems (SEES) based on data mining (DM), fuzzy neural networks (FNN), and relational database (RDB)-driven forward/backward inference engine. Most researchers had tried to develop a text-oriented knowledge base (KB) and inference engine (IE). However, this approach had some limitations such as 1) automatic rule extraction, 2) manipulation of ambiguousness in knowledge, 3) expandability of knowledge base, and 4) speed of inference. To overcome these limitations, knowledge engineers had tried to develop an automatic knowledge extraction mechanism. As a result, the adaptability of the expert systems was improved. Nonetheless, they didn't suggest a hybrid and generalized solution to develop self-evolving expert systems. To this purpose, we propose an automatic knowledge acquisition and composite inference mechanism based on DM, FNN, and RDB-driven inference engine. Our proposed mechanism has five advantages. First, it can extract and reduce the specific domain knowledge from incomplete database by using data mining technology. Second, our proposed mechanism can manipulate the ambiguousness in knowledge by using fuzzy membership functions. Third, it can construct the relational knowledge base and expand the knowledge base unlimitedly with RDBMS (relational database management systems) module. Fourth, our proposed hybrid data mining mechanism can reflect both association rule-based logical inference and complicate fuzzy relationships. Fifth, RDB-driven forward and backward inference time is shorter than the traditional text-oriented inference time.

  • PDF

HCM 클러스터링과 유전자 알고리즘을 이용한 다중 FNN 모델 설계와 비선형 공정으로의 응용 (The Design of Multi-FNN Model Using HCM Clustering and Genetic Algorithms and Its Applications to Nonlinear Process)

  • 박호성;오성권;김현기
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.47-50
    • /
    • 2000
  • In this paper, an optimal identification method using Multi-FNN(Fuzzy-Neural Network) is proposed for model ins of nonlinear complex system. In order to control of nonlinear process with complexity and uncertainty of data, proposed model use a HCM clustering algorithm which carry out the input-output data preprocessing function and Genetic Algorithm which carry out optimization of model. The proposed Multi-FNN is based on Yamakawa's FNN and it uses simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rules. HCM clustering method which carry out the data preprocessing function for system modeling, is utilized to determine the structure of Multi-FNN by means of the divisions of input-output space. Also, the parameters of Multi-FNN model such as apexes of membership function, learning rates and momentum coefficients are adjusted using genetic algorithms. Also, a performance index with a weighting factor is presented to achieve a sound balance between approximation and generalization abilities of the model, To evaluate the performance of the proposed model, we use the time series data for gas furnace and the numerical data of nonlinear function.

  • PDF

Software Sensing for Glucose Concentration in Industrial Antibiotic Fed-batch Culture Using Fuzzy Neural Network

  • Imanishi, Toshiaki;Hanai, Taizo;Aoyagi, Ichiro;Uemura, Jun;Araki, Katsuhiro;Yoshimoto, Hiroshi;Harima, Takeshi;Honda , Hiroyuki;Kobayashi, Takeshi
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제7권5호
    • /
    • pp.275-280
    • /
    • 2002
  • In order to control glucose concentration during fed-batch culture for antibiotic production, we applied so called “software sensor” which estimates unmeasured variable of interest from measured process variables using software. All data for analysis were collected from industrial scale cultures in a pharmaceutical company. First, we constructed an estimation model for glucose feed rate to keep glucose concentration at target value. In actual fed-batch culture, glucose concentration was kept at relatively high and measured once a day, and the glucose feed rate until the next measurement time was determined by an expert worker based on the actual consumption rate. Fuzzy neural network (FNN) was applied to construct the estimation model. From the simulation results using this model, the average error for glucose concentration was 0.88 g/L. The FNN model was also applied for a special culture to keep glucose concentration at low level. Selecting the optimal input variables, it was possible to simulate the culture with a low glucose concentration from the data sets of relatively high glucose concentration. Next, a simulation model to estimate time course of glucose concentration during one day was constructed using the on-line measurable process variables, since glucose concentration was only measured off-line once a day. Here, the recursive fuzzy neural network (RFNN) was applied for the simulation model. As the result of the simulation, average error of RFNN model was 0.91 g/L and this model was found to be useful to supervise the fed-batch culture.

퍼지 뉴럴 네트워크 기반 다중모델 기법 추적 시스템 (A Fuzzy-Neural Network-Based IMM Method Tracking System)

  • 손현승;주영훈;박진배
    • 한국지능시스템학회논문지
    • /
    • 제16권4호
    • /
    • pp.472-478
    • /
    • 2006
  • 본 논문에서는 기동표적의 추적에 대한 새로운 퍼지 뉴럴 네트워크 기반의 다중모델 기법을 소개한다. 표적의 가속도를 효과적으로 다루기 위하여, 이 논문에서는 표적의 가속도를 시변 변수인 표적의 추가적인 잡음으로 두고 각각의 가속도 간격의 정도에 따라 얻어지는 모든 잡음에 대한 변수에 의해 각각의 하부 모델들을 특성화시켰다. 모르는 가속도에 따른 시변 변수를 적응적으로 어립잡기는 어렵기 때문에 정밀한 계산을 위하여 퍼지 뉴럴 네트워크가 이용되었다. 퍼지 뉴럴 네트워크의 동정을 위해서는 오차 역전파 학습법을 사용하였다. 그리고 제안된 알고리즘의 수행 가능성을 보여주기 위하여 몇 가지 예를 제시하였다.

사출성형 문제해결을 위한 퍼지 신경망 적용에 관한 연구 (A Study on the Application of Fuzzy Neural Network for Troubleshooting of Injection Molding Problems)

  • 강성남;허용정;조현찬
    • 한국정밀공학회지
    • /
    • 제19권11호
    • /
    • pp.83-88
    • /
    • 2002
  • In order to predict the moldability of a injection molded part, a simulation of filling is needed. Short shot is one of the most frequent troubles encountered during injection molding process. The adjustment of process conditions is the most economic way to troubleshoot the problematic short shot in cost and time since the mold doesn't need to be modified at all. But it is difficult to adjust the process conditions appropriately in no times since it requires an empirical knowledge of injection molding. In this paper, the intelligent CAE system synergistically combines fuzzy-neural network (FNN) for heuristic knowledge with CAE programs for analytical knowledge. To evaluate the intelligent algorithms, a cellular phone flip has been chosen as a finite element model and filling analyses have been performed with a commercial CAE software. As the results, the intelligent CAE system drastically reduces the troubleshooting time of short shot in comparison with the experts' conventional methodology which is similar to the golden section search algorithm.

A METHOD OF DEVELOPING SOFT SENSOR MODEL USING FUZZY NEURAL NETWORK

  • Chang, Yuqing;Wang, Fuli;Lin, Tian
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2001년도 The Seoul International Simulation Conference
    • /
    • pp.103-109
    • /
    • 2001
  • Soft sensor is an effective method to deal with the estimation of variables, which are difficult to measure because of the reasons of economy or technology. Fuzzy logic system can be used to develop the soft sensor model by infinite rules, but the fuzzy dividing of variable sets is a key problem to achieve an accurate fuzzy logic model, In this paper, we proposed a new method to develop soft sensor model based on fuzzy neural network. First, using a novel method to divide the variable fuzzy sets by the process input and output data. Second, developing the fuzzy logic model based on that fuzzy set dividing. After that, expressing the fuzzy system with a fuzzy neural network and getting the initial soft sensor model based FNN. Last, adjusting the relative parameters of soft sensor model by the BP learning method. The effectiveness of the method proposed and the preferable generalization ability of soft sensor model built are demonstrated by the simulation.

  • PDF