• 제목/요약/키워드: Fuzzy Neural Network(FNN)

검색결과 141건 처리시간 0.044초

FNN과 ANN을 이용한 유도전동기의 속도 제어 및 추정 (Estimation and Control of Speed of Induction Motor using FNN and ANN)

  • 이정철;박기태;정동화
    • 전자공학회논문지SC
    • /
    • 제42권6호
    • /
    • pp.77-82
    • /
    • 2005
  • 본 논문은 FNN과 ANN 제어기를 이용한 유도전동기의 속도 제어 및 추정을 제시한다. 먼저, PI 제어기에서 나타나는 문제점을 해결하기 위하여 퍼지제어와 신경회로망을 혼합 적용한 FN 제어기를 설계한다. 퍼지제어기의 강인성 제어와 신경회로망의 고도의 적응제어의 장점들을 접목한다. 다음은 ANN을 이용하여 유도전동기 드라이브의 속도 추정기법을 제시한다. 2층 구조를 가진 신경회로망에 BPA(Back Propagation Algorithm)를 적용하여 유도전동기 드라이브의 속도를 추정한다. 추정속도의 타당성을 입증하기 위하여 시스템을 구성하여 제어특성을 분석한다. 그리고 추정된 속도를 지령속도와 비교하여 전류제어와 공간벡터 PWM을 통하여 유도전동기의 속도를 제어한다. 본 연구에서 제시한 FNN과 ANN의 제어특성 및 추정성능을 분석하고 그 결과를 제시한다.

하이브리드 데이터마이닝 메커니즘에 기반한 전문가 지식 추출 (Extraction of Expert Knowledge Based on Hybrid Data Mining Mechanism)

  • 김진성
    • 한국지능시스템학회논문지
    • /
    • 제14권6호
    • /
    • pp.764-770
    • /
    • 2004
  • This paper presents a hybrid data mining mechanism to extract expert knowledge from historical data and extend expert systems' reasoning capabilities by using fuzzy neural network (FNN)-based learning & rule extraction algorithm. Our hybrid data mining mechanism is based on association rule extraction mechanism, FNN learning and fuzzy rule extraction algorithm. Most of traditional data mining mechanisms are depended ()n association rule extraction algorithm. However, the basic association rule-based data mining systems has not the learning ability. Therefore, there is a problem to extend the knowledge base adaptively. In addition, sequential patterns of association rules can`t represent the complicate fuzzy logic in real-world. To resolve these problems, we suggest the hybrid data mining mechanism based on association rule-based data mining, FNN learning and fuzzy rule extraction algorithm. Our hybrid data mining mechanism is consisted of four phases. First, we use general association rule mining mechanism to develop an initial rule base. Then, in the second phase, we adopt the FNN learning algorithm to extract the hidden relationships or patterns embedded in the historical data. Third, after the learning of FNN, the fuzzy rule extraction algorithm will be used to extract the implicit knowledge from the FNN. Fourth, we will combine the association rules (initial rule base) and fuzzy rules. Implementation results show that the hybrid data mining mechanism can reflect both association rule-based knowledge extraction and FNN-based knowledge extension.

메시 유전 알고리듬을 이용한 퍼지 규칙 동정 (Fuzzy Rule Identification Using Messy Genetic Algorithm)

  • 권오국;장욱;주영훈;박진배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 추계학술대회 학술발표 논문집
    • /
    • pp.252-256
    • /
    • 1997
  • The success of a fuzzy neural network(FNN) control system solving any given problem critically depends on the architecture of the network. Various attempts have been made in optimizing its structure using genetic algorithm automated designs. This paper presents a new approach to structurally optimized designs of FNN models. A messy genetic algorithm is used to obtain structurally optimized FNN models. Structural optimization is regarded important before neural networks based learning is switched into. We have applied the method to the problem of a numerical approximation

  • PDF

A FUZZY NEURAL NETWORK-BASED DECISION OF ROAD IMAGE QUALITY FOR THE EXTRACTION OF LANE-RELATED INFORMATION

  • YI U. K.;LEE J. W.;BAEK K. R.
    • International Journal of Automotive Technology
    • /
    • 제6권1호
    • /
    • pp.53-63
    • /
    • 2005
  • We propose a fuzzy neural network (FNN) theory capable of deciding the quality of a road image prior to extracting lane-related information. The accuracy of lane-related information obtained by image processing depends on the quality of the raw images, which can be classified as good or bad according to how visible the lane marks on the images are. Enhancing the accuracy of the information by an image-processing algorithm is limited due to noise corruption which makes image processing difficult. The FNN, on the other hand, decides whether road images are good or bad with respect to the degree of noise corruption. A cumulative distribution function (CDF), a function of edge histogram, is utilized to extract input parameters from the FNN according to the fact that the shape of the CDF is deeply correlated to the road image quality. A suitability analysis shows that this deep correlation exists between the parameters and the image quality. The input pattern vector of the FNN consists of nine parameters in which eight parameters are from the CDF and one is from the intensity distribution of raw images. Experimental results showed that the proposed FNN system was quite successful. We carried out simulations with real images taken in various lighting and weather conditions, and obtained successful decision-making about $99\%$ of the time.

퍼지신경망을 이용한 도로 영상의 양불량 판정 (Determination of Road Image Quality Using Fuzzy-Neural Network)

  • 이운근;백광렬;이준웅
    • 제어로봇시스템학회논문지
    • /
    • 제8권6호
    • /
    • pp.468-476
    • /
    • 2002
  • The confidence of information from image processing depends on the original image quality. Enhancing the confidence by an algorithm has an essential limitation. Especially, road images are exposed to lots of noisy sources, which makes image processing difficult. We, in this paper, propose a FNN (fuzzy-neural network) capable oi deciding the quality of a road image prior to extracting lane-related information. According to the decision by the FNN, road images are classified into good or bad to extract lane-related information. A CDF (cumulative distribution function), a function of edge histogram, is utilized to construct input parameters of the FNN, it is based on the fact that the shape of the CDF and the image quality has large correlation. Input pattern vector to the FNN consists of ten parameters in which nine parameters are from the CDF and the other one is from intensity distribution of raw image. Correlation analysis shows that each parameter represents the image quality well. According to the experimental results, the proposed FNN system was quite successful. We carried out simulations with real images taken by various lighting and weather conditions and achieved about 99% successful decision-making.

PREDICTION OF HYDROGEN CONCENTRATION IN CONTAINMENT DURING SEVERE ACCIDENTS USING FUZZY NEURAL NETWORK

  • KIM, DONG YEONG;KIM, JU HYUN;YOO, KWAE HWAN;NA, MAN GYUN
    • Nuclear Engineering and Technology
    • /
    • 제47권2호
    • /
    • pp.139-147
    • /
    • 2015
  • Recently, severe accidents in nuclear power plants (NPPs) have become a global concern. The aim of this paper is to predict the hydrogen buildup within containment resulting from severe accidents. The prediction was based on NPPs of an optimized power reactor 1,000. The increase in the hydrogen concentration in severe accidents is one of the major factors that threaten the integrity of the containment. A method using a fuzzy neural network (FNN) was applied to predict the hydrogen concentration in the containment. The FNN model was developed and verified based on simulation data acquired by simulating MAAP4 code for optimized power reactor 1,000. The FNN model is expected to assist operators to prevent a hydrogen explosion in severe accident situations and manage the accident properly because they are able to predict the changes in the trend of hydrogen concentration at the beginning of real accidents by using the developed FNN model.

퍼지-뉴럴 합성을 이용한 제어기의 설계 (On design of a control scheme using fuzzy-neural network)

  • 임광우;조현찬;강훈;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.117-122
    • /
    • 1992
  • The fuzzy-neural hybrid control system utilizing the fuzzy-neural network(FNN) will be presented in this paper. The basic structure of the controller is the parallel combination of a conventional P-controller and a FNN. Such a combination can guarantee the stability of a plant at initial stage before the rules are completely created. And a method how to automatically tunning the parameters of the FNN will be proposed with error back-propagation(BP) algorithm. Finally the effectiveness of the proposed strategy will be verified by computer simulations using a two DOF robot manipulator.

  • PDF

PREDICTION OF THE REACTOR VESSEL WATER LEVEL USING FUZZY NEURAL NETWORKS IN SEVERE ACCIDENT CIRCUMSTANCES OF NPPS

  • Park, Soon Ho;Kim, Dae Seop;Kim, Jae Hwan;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • 제46권3호
    • /
    • pp.373-380
    • /
    • 2014
  • Safety-related parameters are very important for confirming the status of a nuclear power plant. In particular, the reactor vessel water level has a direct impact on the safety fortress by confirming reactor core cooling. In this study, the reactor vessel water level under the condition of a severe accident, where the water level could not be measured, was predicted using a fuzzy neural network (FNN). The prediction model was developed using training data, and validated using independent test data. The data was generated from simulations of the optimized power reactor 1000 (OPR1000) using MAAP4 code. The informative data for training the FNN model was selected using the subtractive clustering method. The prediction performance of the reactor vessel water level was quite satisfactory, but a few large errors were occasionally observed. To check the effect of instrument errors, the prediction model was verified using data containing artificially added errors. The developed FNN model was sufficiently accurate to be used to predict the reactor vessel water level in severe accident situations where the integrity of the reactor vessel water level sensor is compromised. Furthermore, if the developed FNN model can be optimized using a variety of data, it should be possible to predict the reactor vessel water level precisely.

FNN에 의한 태양광 발전의 MPPT 제어 (MPPT Control of Photovoltaic by FNN)

  • 정철호;고재섭;최정식;전영선;김도연;정병진;정동화
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2008년도 춘계학술대회 논문집
    • /
    • pp.399-402
    • /
    • 2008
  • The paper proposes a novel control algorithm for tracking maximum power of PV generation system. The maximum power of PV array is determinated by a insolation and temperature. Prior considered the term in PV generation system is how maximum power point is accurately tracked. The paper proposes a FNN(Fuzzy Neural-Network) control algorithm so as to accurately track those maximum power points. The proposed control algorithm comprises the antecedence part of fuzzy rule and clustering method, multi-layer neural network in the consequent part. FNN has the advantages which are depicted both high performance and robustness in Fuzzy control and high adaptive control in Neural Network. Specially, it can show the outstanding control performance for parameter variations appling to non-linear character of PV array. In paper, the tracking speed and the accuracy prove the validity through comparing a proposed algorithm with a conventional one.

  • PDF

The Design of Genetically Optimized Multi-layer Fuzzy Neural Networks

  • Park, Byoung-Jun;Park, Keon-Jun;Lee, Dong-Yoon;Oh, Sung-Kwun
    • 한국지능시스템학회논문지
    • /
    • 제14권5호
    • /
    • pp.660-665
    • /
    • 2004
  • In this study, a new architecture and comprehensive design methodology of genetically optimized Multi-layer Fuzzy Neural Networks (gMFNN) are introduced and a series of numeric experiments are carried out. The gMFNN architecture results from a synergistic usage of the hybrid system generated by combining Fuzzy Neural Networks (FNN) with Polynomial Neural Networks (PNN). FNN contributes to the formation of the premise part of the overall network structure of the gMFNN. The consequence part of the gMFNN is designed using PNN. The optimization of the FNN is realized with the aid of a standard back-propagation learning algorithm and genetic optimization. The development of the PNN dwells on the extended Group Method of Data Handling (GMDH) method and Genetic Algorithms (GAs). To evaluate the performance of the gMFNN, the models are experimented with the use of a numerical example.