• 제목/요약/키워드: Fuzzy Logic Control

검색결과 1,464건 처리시간 0.039초

Implementation of Fuzzy Logic Control for Air Conditioning Systems

  • Mongkolwongrojn, M.;Sarawit, V.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1264-1267
    • /
    • 2005
  • Fuzzy logic control has been widely applied for handling the system which has uncertainty or high robust system. Since the dynamic behaviors of the systems contain complexity and uncertainty in its parameters, several fuzzy logic controllers have been implemented to control room temperature in the field of air conditioning system. In this paper, the fuzzy logic control has been developed to control both in door temperature and humidity in the air conditioning systems. The manipulating variables are speed of compressor, heater and supply air flow rate. The microcomputer was used to interface with in system. The experimental results show the superior of multivaiable fuzzy logic control to keep room temperature and humidity in air conditioning system for the best comfortable.

  • PDF

ON THE STRUCTURE AND LEARNING OF NEURAL-NETWORK-BASED FUZZY LOGIC CONTROL SYSTEMS

  • C.T. Lin;Lee, C.S. George
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.993-996
    • /
    • 1993
  • This paper addresses the structure and its associated learning algorithms of a feedforward multi-layered connectionist network, which has distributed learning abilities, for realizing the basic elements and functions of a traditional fuzzy logic controller. The proposed neural-network-based fuzzy logic control system (NN-FLCS) can be contrasted with the traditional fuzzy logic control system in their network structure and learning ability. An on-line supervised structure/parameter learning algorithm dynamic learning algorithm can find proper fuzzy logic rules, membership functions, and the size of output fuzzy partitions simultaneously. Next, a Reinforcement Neural-Network-Based Fuzzy Logic Control System (RNN-FLCS) is proposed which consists of two closely integrated Neural-Network-Based Fuzzy Logic Controllers (NN-FLCS) for solving various reinforcement learning problems in fuzzy logic systems. One NN-FLC functions as a fuzzy predictor and the other as a fuzzy controller. As ociated with the proposed RNN-FLCS is the reinforcement structure/parameter learning algorithm which dynamically determines the proper network size, connections, and parameters of the RNN-FLCS through an external reinforcement signal. Furthermore, learning can proceed even in the period without any external reinforcement feedback.

  • PDF

Adaptive Control of Robot Manipulator using Neuvo-Fuzzy Controller

  • Park, Se-Jun;Yang, Seung-Hyuk;Yang, Tae-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.161.4-161
    • /
    • 2001
  • This paper presents adaptive control of robot manipulator using neuro-fuzzy controller Fuzzy logic is control incorrect system without correct mathematical modeling. And, neural network has learning ability, error interpolation ability of information distributed data processing, robustness for distortion and adaptive ability. To reduce the number of fuzzy rules of the FLS(fuzzy logic system), we consider the properties of robot dynamic. In fuzzy logic, speciality and optimization of rule-base creation using learning ability of neural network. This paper presents control of robot manipulator using neuro-fuzzy controller. In proposed controller, fuzzy input is trajectory following error and trajectory following error differential ...

  • PDF

퍼지논리를 이용한 로봇 매니퓰레이터의 다변수제어 (Multivariable control of robot manipulators using fuzzy logic)

  • 이현철;한상완;홍석교
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.490-493
    • /
    • 1996
  • This paper presents a control scheme for the motion of a 2 DOF robot manipulator. Robot manipulators are multivariable nonlinear systems. Fuzzy logic is avaliable human-like control without complex mathematical operation and is suitable to nonlinear system control. In this paper, Implementation of fuzzy logic control of robotic manipulators shows. Algorithm has been performed with simulation packages MATRIXx and SystemBuild.

  • PDF

직류 서보계의 퍼지제어와 $\alpha$-레벨 퍼지집합 분해에 의한 퍼지추론 연산회로 구현 (Fuzzy Control of DC Servo System and Implemented Logic Circuits of Fuzzy Inference Engine Using Decomposition of $\alpha$-level Fuzzy Set)

  • 홍정표;홍순일;이요섭
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권5호
    • /
    • pp.793-800
    • /
    • 2004
  • The purpose of this study is to develope a servo system with faster and more accurate response. This paper describes a method of approximate reasoning for fuzzy control of servo system based on the decomposition of $\alpha$-level fuzzy sets. We propose that fuzzy logic algorithm is a body from fuzzy inference to defuzzificaion cases where the output variable u directly is generated PWM The effectiveness for robust and faster response of the fuzzy control scheme are verified for a variable parameter by comparison with a PID control and fuzzy control A position control of DC servo system with a fuzzy logic controller is demonstrated successfully.

Remote Fuzzy Logic Control of Networked Control system in Profibus-DP

  • Lee, Kyung-Chang;Lee, Suk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.133.2-133
    • /
    • 2001
  • This paper focuses on the feasibility of fuzzy logic control for networked control systems. In order to evaluate its feasibility, a networked control system for motor speed control is implemented on a Profibus-DP network. The NCS consists of several independent, but interacting processes running on two separate stations. By using this NCS, the network delay is analyzed to find the cause of the delay. Furthermore, in order to prove the feasibility, the fuzzy logic controllers performance is compared with those of conventional PID controllers. Based on the experimental results, the fuzzy logic controller can be a viable choice for NCS due to its robustness against parameter uncertainty.

  • PDF

Fuzzy 로직에 의한 3차원 천정크레인의 무진동 제어 (A Fuzzy-Logic Anti-Swing Control for Three-Dimensional Overhead Cranes)

  • 이호훈;김현기
    • 대한기계학회논문집A
    • /
    • 제25권9호
    • /
    • pp.1468-1474
    • /
    • 2001
  • In this paper, a new fuzzy-logic anti-swing control scheme is proposed for a three-dimensional overhead crane. The proposed control consists of a position servo control and a fuzzy-logic control. The position servo control is used to control the trolley position and rope length, and the fuzzy-logic control is used to suppress load swing. The proposed control guarantees not only prompt suppression of load swing but also accurate control of trolley position and rope length for the simultaneous travel, traverse, and hoisting motions of the crane. The effectiveness of the proposed control is shown by experiments with a prototype three-dimensional overhead crane.

A New Approach to Adaptive Damping Control for Statistic VAR Compensators Based on Fuzzy Logic

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.825-829
    • /
    • 2005
  • This paper presents an approach for designing a fuzzy logic-based adaptive SVC damping In controller for damping low frequency power oscillations. Power systems are often subject to low Frequency electro-mechanical oscillations resulting from electrical disturbances. Generally, power system stabilizers are designed to provide damping against this kind of oscillations. Another means to achieve damping is to design supplementary damping controllers that are equipped with SVC. Various approaches are available for designing such controllers, many of which are based on the concepts of damping torque and others which treat the damping controller design as a generic control problem and apply various control theories on it. In our proposed approach, linear optimal controllers are designed and then a fuzzy logic tuning mechanism is constructed to generate a single control signal. The controller uses the system operating condition and a fuzzy logic signal tuner to blend the control signals generated by two linear controllers, which are designed using an optimal control method. First, we design damping controllers for the two extreme conditions; the control action for intermediate conditions is determined by the fuzzy logic tuner. The more the operating condition belongs to one of the two fuzzy sets, the stronger the contribution of the control signal from that set in the output signal. Simulation studies done on a one-machine infinite-bus and a four-machine two-area test system, show that the proposed fuzzy adaptive damping SVC controller effectively enhances the damping of low frequency oscillations.

  • PDF

예측 신경망을 이용한 적응 퍼지 논리 제어 (Adaptive Fuzzy Logic Control Using a Predictive Neural Network)

  • 정성훈
    • 한국지능시스템학회논문지
    • /
    • 제7권5호
    • /
    • pp.46-50
    • /
    • 1997
  • 퍼지논리 제어에서 정적인 퍼지규칙은 플랜트나 환경 파라메터의 중대한 변화에 대처할 수 없다. 이러한 문제를 해결하기 위하여 지금까지 스스로 조직화하는 퍼지제어 및 신경망에 기초한 뉴로퍼지등의 기법이 도입되었다.그러나 이러한 기존 방법들은 동적으로 변화된 퍼지 규칙이 완전하지 않거나 모순될 수 있음으로 해서 퍼지 제어기를 위험한 상황에 처하게 할수도 있다. 본 논문에서는 예측 신경망을 사용하여 새로운 적응퍼지 제어기법을 제안한다.제안된 퍼지제어기는 비록 제어 플랜트나 환경 파라메터가 변화할지라도 초기의 완전하고 모순되지 않은 퍼지 규칙과 계속해서 학습하는 예측 신경망의 예측에러를 이용하여 제어출력을 안전하게 적응적으로 변화시켜간다. 직류 서보모터의 위치제어문제를 이용하여 실험해본 결과 제안한 방법이 적응면에서 매우 유용함을 보였다.

  • PDF

Comparing type-1, interval and general type-2 fuzzy approach for dealing with uncertainties in active control

  • Farzaneh Shahabian Moghaddam;Hashem Shariatmadar
    • Smart Structures and Systems
    • /
    • 제31권2호
    • /
    • pp.199-212
    • /
    • 2023
  • Nowadays fuzzy logic in control applications is a well-recognized alternative, and this is thanks to its inherent advantages. Generalized type-2 fuzzy sets allow for a third dimension to capture higher order uncertainty and therefore offer a very powerful model for uncertainty handling in real world applications. With the recent advances that allowed the performance of general type-2 fuzzy logic controllers to increase, it is now expected to see the widespread of type-2 fuzzy logic controllers to many challenging applications in particular in problems of structural control, that is the case study in this paper. It should be highlighted that this is the first application of general type-2 fuzzy approach in civil structures. In the following, general type-2 fuzzy logic controller (GT2FLC) will be used for active control of a 9-story nonlinear benchmark building. The design of type-1 and interval type-2 fuzzy logic controllers is also considered for the purpose of comparison with the GT2FLC. The performance of the controller is validated through the computer simulation on MATLAB. It is demonstrated that extra design degrees of freedom achieved by GT2FLC, allow a greater potential to better model and handle the uncertainties involved in the nature of earthquakes and control systems. GT2FLC outperforms successfully a control system that uses T1 and IT2 FLCs.