• 제목/요약/키워드: Fuzzy Linear Regression

검색결과 118건 처리시간 0.022초

심박변이도를 이용한 적응적 뉴로 퍼지 감정예측 모형에 관한 연구 (Implementing an Adaptive Neuro-Fuzzy Model for Emotion Prediction Based on Heart Rate Variability(HRV))

  • 박성수;이건창
    • 디지털융복합연구
    • /
    • 제17권1호
    • /
    • pp.239-247
    • /
    • 2019
  • 감정을 정확히 예측하는 것은 환자중심의 의료디바이스 개발 및 감성관련 산업에서 매우 중요한 이슈이다. 감정예측에 관한 많은 연구 중 감정 예측에 심박 변동성과 뉴로-퍼지 접근법을 적용한 연구는 없다. 본 연구는 HRV를 이용한 ANFEP(Adaptive Neuro Fuzzy system for Emotion Prediction)을 제안한다. ANFEP의 핵심 기능은 인공 신경망과 퍼지시스템을 통합해 예측 모델을 학습하는 ANFIS(Adaptive Neuro-Fuzzy Inference System)에 기반한다. 제안 모형의 검증을 위해 50명의 실험자를 대상으로 청각자극으로 감정을 유발하고, 심박변이도를 구하여 ANFEP 모형에 입력하였다. STDRR과 RMSSD를 입력으로 하고 입력변수 당 2개의 소속함수로 하는 ANFEP모형이 가장 좋은 결과를 나타났다. 제안한 감정예측 모형을 선형회귀 분석, 서포트 벡터 회귀, 인공신경망, 랜덤 포레스트와 비교한 결과 본 제안모형이 가장 우수한 성능을 보였다. 연구 결과는 보다 적은 입력으로 신뢰성 높은 감정인식이 가능함을 입증했고, 이를 활용해 보다 정확하고 신뢰성 높은 감정인식 시스템 개발에 대한 연구가 필요하다.

Predicting rock brittleness indices from simple laboratory test results using some machine learning methods

  • Davood Fereidooni;Zohre Karimi
    • Geomechanics and Engineering
    • /
    • 제34권6호
    • /
    • pp.697-726
    • /
    • 2023
  • Brittleness as an important property of rock plays a crucial role both in the failure process of intact rock and rock mass response to excavation in engineering geological and geotechnical projects. Generally, rock brittleness indices are calculated from the mechanical properties of rocks such as uniaxial compressive strength, tensile strength and modulus of elasticity. These properties are generally determined from complicated, expensive and time-consuming tests in laboratory. For this reason, in the present research, an attempt has been made to predict the rock brittleness indices from simple, inexpensive, and quick laboratory test results namely dry unit weight, porosity, slake-durability index, P-wave velocity, Schmidt rebound hardness, and point load strength index using multiple linear regression, exponential regression, support vector machine (SVM) with various kernels, generating fuzzy inference system, and regression tree ensemble (RTE) with boosting framework. So, this could be considered as an innovation for the present research. For this purpose, the number of 39 rock samples including five igneous, twenty-six sedimentary, and eight metamorphic were collected from different regions of Iran. Mineralogical, physical and mechanical properties as well as five well known rock brittleness indices (i.e., B1, B2, B3, B4, and B5) were measured for the selected rock samples before application of the above-mentioned machine learning techniques. The performance of the developed models was evaluated based on several statistical metrics such as mean square error, relative absolute error, root relative absolute error, determination coefficients, variance account for, mean absolute percentage error and standard deviation of the error. The comparison of the obtained results revealed that among the studied methods, SVM is the most suitable one for predicting B1, B2 and B5, while RTE predicts B3 and B4 better than other methods.

군집화 알고리즘 및 모듈라 네트워크를 이용한 태양광 발전 시스템 모델링 (Modeling of Photovoltaic Power Systems using Clustering Algorithm and Modular Networks)

  • 이창성;지평식
    • 전기학회논문지P
    • /
    • 제65권2호
    • /
    • pp.108-113
    • /
    • 2016
  • The real-world problems usually show nonlinear and multi-variate characteristics, so it is difficult to establish concrete mathematical models for them. Thus, it is common to practice data-driven modeling techniques in these cases. Among them, most widely adopted techniques are regression model and intelligent model such as neural networks. Regression model has drawback showing lower performance when much non-linearity exists between input and output data. Intelligent model has been shown its superiority to the linear model due to ability capable of effectively estimate desired output in cases of both linear and nonlinear problem. This paper proposes modeling method of daily photovoltaic power systems using ELM(Extreme Learning Machine) based modular networks. The proposed method uses sub-model by fuzzy clustering rather than using a single model. Each sub-model is implemented by ELM. To show the effectiveness of the proposed method, we performed various experiments by dataset acquired during 2014 in real-plant.

퍼지회귀분석과 physical programming을 활용한 정보보호 도구 선정 통합 프레임워크 (An integrated framework of security tool selection using fuzzy regression and physical programming)

  • ;;신상문;최용선;김상균
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권11호
    • /
    • pp.143-156
    • /
    • 2010
  • 근거리통신망과 인터넷으로부터 유입되는 정보보호 위협이 증가하는 상황에 대처하기 위하여, 많은 기업들이 정보보호 시스템 구축을 고려하고 있다. 기업 내 의사결정자의 정보보호 도구 선택을 지원하기 위하여, 본 논문은 선형퍼지회귀분석 및 physical programming을 이용하는 세 가지 단계로 구성된 통합 프레임워크를 제안하였다. 첫째, 정보보호도구 선정 기준 및 평가 기준에 대한 전문가들의 상대평가 의견을 바탕으로, 각 정보보호 기준들 간의 관계를 정량화시키기 위하여 analytic hierarchy process 및 quality function deployment 방법을 적용하였다. 그리고, 선형퍼지회귀분석법을 활용하여 각 기준별 평가값을 산출하였다. 마지막으로, 정보보호 시스템의 품질, 정보보호 수준, 비용 등의 다수 목적함수를 효과적으로 고려하기 위하여, physical programming weights 알고리즘을 통하여 도출된 가중치에 기반한 목표계획법을 활용하여 가장 적절한 정보보호 도구를 선정하였다. 이와 같은 과정은 구체적인 예제를 통해 단계별로 설명하고 그 장점을 가시적으로 제시하였다. 본 연구에서 제안한 방법은 전문가 제공 정보에서 발생 가능한 노이즈를 효과적으로 제거함으로써, 전문가의 경험을 통한 표준 정보보호 기준의 확보와 수학적 최적화 방법을 통한 정확성 확보의 장점을 의사결정자에게 제공할 것으로 기대된다.

Neuro-fuzzy and artificial neural networks modeling of uniform temperature effects of symmetric parabolic haunched beams

  • Yuksel, S. Bahadir;Yarar, Alpaslan
    • Structural Engineering and Mechanics
    • /
    • 제56권5호
    • /
    • pp.787-796
    • /
    • 2015
  • When the temperature of a structure varies, there is a tendency to produce changes in the shape of the structure. The resulting actions may be of considerable importance in the analysis of the structures having non-prismatic members. The computation of design forces for the non-prismatic beams having symmetrical parabolic haunches (NBSPH) is fairly difficult because of the parabolic change of the cross section. Due to their non-prismatic geometrical configuration, their assessment, particularly the computation of fixed-end horizontal forces and fixed-end moments becomes a complex problem. In this study, the efficiency of the Artificial Neural Networks (ANN) and Adaptive Neuro Fuzzy Inference Systems (ANFIS) in predicting the design forces and the design moments of the NBSPH due to temperature changes was investigated. Previously obtained finite element analyses results in the literature were used to train and test the ANN and ANFIS models. The performances of the different models were evaluated by comparing the corresponding values of mean squared errors (MSE) and decisive coefficients ($R^2$). In addition to this, the comparison of ANN and ANFIS with traditional methods was made by setting up Linear-regression (LR) model.

AWS 지점별 기상데이타를 이용한 진화적 회귀분석 기반의 단기 풍속 예보 보정 기법 (Evolutionary Nonlinear Regression Based Compensation Technique for Short-range Prediction of Wind Speed using Automatic Weather Station)

  • 현병용;이용희;서기성
    • 전기학회논문지
    • /
    • 제64권1호
    • /
    • pp.107-112
    • /
    • 2015
  • This paper introduces an evolutionary nonlinear regression based compensation technique for the short-range prediction of wind speed using AWS(Automatic Weather Station) data. Development of an efficient MOS(Model Output Statistics) is necessary to correct systematic errors of the model, but a linear regression based MOS is hard to manage an irregular nature of weather prediction. In order to solve the problem, a nonlinear and symbolic regression method using GP(Genetic Programming) is suggested for a development of MOS wind forecast guidance. Also FCM(Fuzzy C-Means) clustering is adopted to mitigate bias of wind speed data. The purpose of this study is to evaluate the accuracy of the estimation by a GP based nonlinear MOS for 3 days prediction of wind speed in South Korean regions. This method is then compared to the UM model and has shown superior results. Data for 2007-2009, 2011 is used for training, and 2012 is used for testing.

퍼지추론방법에 의한 형광등의 디밍 제어에 대한 연구 (A Study on Dimming Control of Fluorescent Lamp with the Aid of Fuzzy Inference Method)

  • 백진열;이인태;오성권;장성환
    • 한국산학기술학회논문지
    • /
    • 제9권4호
    • /
    • pp.911-917
    • /
    • 2008
  • 본 논문에서는 지능형 디밍 컨버터의 새로운 구조 및 설계 방법론을 소개하고 일련의 수치적인 실험을 통하여 제안된 모델 및 시스템을 평가한다. 형광 램프용 디밍 전자식 안정기는 전용의 디밍 IC를 사용하여 기존의 전자식 안정기 대비 최대 83%의 램프 수명 및 안정기 수명 연장을 가능하게 했다. 하지만 이러한 장점은 사용자가 디밍 컨트롤 스위치를 통하여 수동으로 제어를 해야 하는 불편함 뿐만 아니라, 수동 제어가 불가능 할 경우 에너지 절약과 램프의 수명 연장의 실효를 얻을 수 없다. 따라서 본 논문에서는 지능형 퍼지 이론(Fuzzy Inference System)을 전자식 안정기에 접목시켜 지능형 디밍 컨버터 기반 전자식 안정기에 대한 연구 및 외부조도 조건과 사용자 설정에 따른 에너지 절약을 도모하는데 중점을 두었다. 마지막으로 제안된 시스템의 하드웨어에 지능형 모델을 적용함으로써 기존 전자식 안정기 대비 성능평가를 통해 지능형 디밍 컨버터의 우수성을 보인다.

진화론적 최적 뉴로퍼지 네트워크: 해석과 설계 (Genetically Optimized Neurofuzzy Networks: Analysis and Design)

  • 박병준;김현기;오성권
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권8호
    • /
    • pp.561-570
    • /
    • 2004
  • In this paper, new architectures and comprehensive design methodologies of Genetic Algorithms(GAs) based Genetically optimized Neurofuzzy Networks(GoNFN) are introduced, and a series of numeric experiments are carried out. The proposed GoNFN is based on the rule-based Neurofuzzy Networks(NFN) with the extended structure of the premise and the consequence parts of fuzzy rules being formed within the networks. The premise part of the fuzzy rules are designed by using space partitioning in terms of fuzzy sets defined in individual variables. In the consequence part of the fuzzy rules, three different forms of the regression polynomials such as constant, linear and quadratic are taken into consideration. The structure and parameters of the proposed GoNFN are optimized by GAs. GAs being a global optimization technique determines optimal parameters in a vast search space. But it cannot effectively avoid a large amount of time-consuming iteration because GAs finds optimal parameters by using a given space. To alleviate the problems, the dynamic search-based GAs is introduced to lead to rapidly optimal convergence over a limited region or a boundary condition. In a nutshell, the objective of this study is to develop a general design methodology o GAs-based GoNFN modeling, come up a logic-based structure of such model and propose a comprehensive evolutionary development environment in which the optimization of the model can be efficiently carried out both at the structural as well as parametric level for overall optimization by utilizing the separate or consecutive tuning technology. To evaluate the performance of the proposed GoNFN, the models are experimented with the use of several representative numerical examples.

퍼지논리와 가상가치법 혼합을 통한 현상적 건축미의 매력가치 - 노들섬 문화센터 시설이용료를 가치 척도로 - (Attractiveness Valuation of Phenomenal Architectural Aesthetic by Mixing the Fuzzy Logic with Contingent Valuation - Availing the Use Fares of Facility within Nodle Islet Cultural Center as Valuation Scale -)

  • 이동주;고은형
    • 대한건축학회논문집:계획계
    • /
    • 제34권5호
    • /
    • pp.3-10
    • /
    • 2018
  • The purpose of this study is to estimate the attractiveness value according to the preference level on architectural aesthetic. This research starts from the concept that aesthetic is phenomenon and from the viewpoint of 'attraction value' which affects goods. Interactive internet surveys were conducted for 500 citizens of Seoul metropolitan city who are potential users of the Nodle Islet Cultural Center. Based on the scenarios and questionnaires with fuzzy models, we have examined the evaluation of architectural aesthetic and monetary willing-to-payment, and estimated the economic value by preference level of architectural aesthetic through linear regression analysis. The main results of the study are as follows: First, the economic value of the Nodle Islet Cultural Center was estimated at ?15,683.43/person. Residents of Seoul metropolitan city were willing to accept the increase in the above-mentioned amount of the facility fares when their preferred works (average 86.81 points) were constructed. (P <0/05) Second, it is confirmed that the economic value increases dramatically as the preference level of architectural aesthetic increases. Third, it is presumed that the infinite valuation of architectural aesthetic and the problem of free riding coexist in the estimation of economic valuation of architectural aesthetic for public buildings. Fourth, by mixing the fuzzy logic with contingent valuation method, starting point bias and no response biases that happened in contingent valuation could be disappeared. bias elimination must be considered seriously because another bias could be happened in full process of the research. The results of this study will serve as a basis for spreading architectural aesthetic value-oriented research from the vague and obscure aesthetic-centered discussion on the existing architectural aesthetic. In addition, it will be an opportunity to draw institutional application and utilization strategy of architectural aesthetic through architectural aesthetic value research.

자기구성 퍼지 다항식 뉴럴 네트워크 구조의 설계 (Design of Self-Organizing Fuzzy Polynomial Neural Networks Architecture)

  • 박호성;박건준;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2519-2521
    • /
    • 2003
  • In this paper, we propose Self-Organizing Fuzzy Polynomial Neural Networks(SOFPNN) architecture for optimal model identification and discuss a comprehensive design methodology supporting its development. It is shown that this network exhibits a dynamic structure as the number of its layers as well as the number of nodes in each layer of the SOFPNN are not predetermined (as this is the case in a popular topology of a multilayer perceptron). As the form of the conclusion part of the rules, especially the regression polynomial uses several types of high-order polynomials such as linear, quadratic, and modified quadratic. As the premise part of the rules, both triangular and Gaussian-like membership function are studied and the number of the premise input variables used in the rules depends on that of the inputs of its node in each layer. We introduce two kinds of SOFPNN architectures, that is, the basic and modified one with both the generic and the advanced type. The superiority and effectiveness of the proposed SOFPNN architecture is demonstrated through nonlinear function numerical example.

  • PDF