• Title/Summary/Keyword: Fuzzy Information Granules

Search Result 38, Processing Time 0.029 seconds

Optimal Design of Fuzzy Relation-based Fuzzy Inference Systems Based on Evolutionary Information Granulation (진화론적 정보 입자에 기반한 퍼지 관계 기반 퍼지 추론 시스템의 최적 설계)

  • Park, Keon-Jun;Kim, Hyun-Ki;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.340-342
    • /
    • 2004
  • In this paper, we introduce a new category of fuzzy inference systems baled on information granulation to carry out the model identification of complex and nonlinear systems. Informal speaking, information granules are viewed as linked collections of objects(data, in particular) drawn together by the criteria of proximity, similarity, or functionality. Granulation of information with the aid of Hard C-Means(HCM) clustering algorithm help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polyminial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms(GAs) and the least square method. The proposed model is contrasted with the performance of the conventional fuzzy models in the literature.

  • PDF

The Principle of Justifiable Granularity and an Optimization of Information Granularity Allocation as Fundamentals of Granular Computing

  • Pedrycz, Witold
    • Journal of Information Processing Systems
    • /
    • v.7 no.3
    • /
    • pp.397-412
    • /
    • 2011
  • Granular Computing has emerged as a unified and coherent framework of designing, processing, and interpretation of information granules. Information granules are formalized within various frameworks such as sets (interval mathematics), fuzzy sets, rough sets, shadowed sets, probabilities (probability density functions), to name several the most visible approaches. In spite of the apparent diversity of the existing formalisms, there are some underlying commonalities articulated in terms of the fundamentals, algorithmic developments and ensuing application domains. In this study, we introduce two pivotal concepts: a principle of justifiable granularity and a method of an optimal information allocation where information granularity is regarded as an important design asset. We show that these two concepts are relevant to various formal setups of information granularity and offer constructs supporting the design of information granules and their processing. A suite of applied studies is focused on knowledge management in which case we identify several key categories of schemes present there.

Optimal Design of Fuzzy Relation-based Fuzzy Inference Systems with Information Granulation (정보 Granules에 의한 퍼지 관계 기반 퍼지 추론 시스템의 최적 설계)

  • Park Keon-Jun;Ahn Tae-Chon;Oh Sung-kwun;Kim Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.81-86
    • /
    • 2005
  • In this study, we introduce a new category of fuzzy inference systems based on information granulation to carry out the model identification of complex and nonlinear systems. Informally speaking, information granules are viewed as linked collections of objects (data, in particular) drawn together by the criteria of proximity, similarity, or functionality Granulation of information with the aid of Hard C-Means (HCM) clustering help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms(GAs) and the least square method (LSM). An aggregate objective function with a weighting factor is also used in order to achieve a balance between performance of the fuzzy model. The proposed model is evaluated with using a numerical example and is contrasted with the performance of conventional fuzzy models in the literature.

Genetically Optimized Information Granules-based FIS (유전자적 최적 정보 입자 기반 퍼지 추론 시스템)

  • Park, Keon-Jun;Oh, Sung-Kwun;Lee, Young-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.146-148
    • /
    • 2005
  • In this paper, we propose a genetically optimized identification of information granulation(IG)-based fuzzy model. To optimally design the IG-based fuzzy model we exploit a hybrid identification through genetic alrogithms(GAs) and Hard C-Means (HCM) clustering. An initial structure of fuzzy model is identified by determining the number of input, the seleced input variables, the number of membership function, and the conclusion inference type by means of GAs. Granulation of information data with the aid of Hard C-Means(HCM) clustering algorithm help determine the initial paramters of fuzzy model such as the initial apexes of the membership functions and the initial values of polyminial functions being used in the premise and consequence part of the fuzzy rules. And the inital parameters are tuned effectively with the aid of the genetic algorithms and the least square method. And also, we exploite consecutive identification of fuzzy model in case of identification of structure and parameters. Numerical example is included to evaluate the performance of the proposed model.

  • PDF

Design of Information Granules based Fuzzy Polynomial Neural Networks Using Symbolic Encoding of Genetic Algorithms and Its Application to Software Systems (유전자 알고리즘의 기호 코딩을 이용한 정보 입자기반 터지 다항식 뉴럴네트워크의 설계와 소프트웨어 공정으로의 응용)

  • Lee, In-Tae;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2091-2092
    • /
    • 2006
  • 본 논문은 소프트웨어 공정에 대하여 유전자 알고리즘의 기호코딩을 이용한 정보입자 기반 퍼지 다항식 뉴럴 네트워크 (Information Granules based genetic Fuzzy Polynomial Neural Networks ;IG based gFPNN)의 모델 설계를 제안한다. 기존 퍼지 다항식 뉴럴네트워크의 구조 최적화를 위해 이진코딩을 사용하였다. 그러나 이진코딩에서 스트링의 길이가 길면 길수록 인접한 두 수 사이에 발생하는 급격한 비트 차이라는 해밍 절벽이 발생하였다. 이에 제안된 모델에서는 해밍절벽의 문제를 해결하기 위해 기호코딩을 사용하였다. 제안된 모델의 전반부 구조와 후반부 구조는 기존 모델에 구성을 그대로 사용한다. 실험적 예제를 통하여 제안된 모델의 근사화 능력과 일반화 능력이 우수함을 보인다.

  • PDF

Design of IG-based Fuzzy Models Using Improved Space Search Algorithm (개선된 공간 탐색 알고리즘을 이용한 정보입자 기반 퍼지모델 설계)

  • Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.686-691
    • /
    • 2011
  • This study is concerned with the identification of fuzzy models. To address the optimization of fuzzy model, we proposed an improved space search evolutionary algorithm (ISSA) which is realized with the combination of space search algorithm and Gaussian mutation. The proposed ISSA is exploited here as the optimization vehicle for the design of fuzzy models. Considering the design of fuzzy models, we developed a hybrid identification method using information granulation and the ISSA. Information granules are treated as collections of objects (e.g. data) brought together by the criteria of proximity, similarity, or functionality. The overall hybrid identification comes in the form of two optimization mechanisms: structure identification and parameter identification. The structure identification is supported by the ISSA and C-Means while the parameter estimation is realized via the ISSA and weighted least square error method. A suite of comparative studies show that the proposed model leads to better performance in comparison with some existing models.

Optimization of fuzzy systems based on information granules (정보 Granules 기반 퍼지 시스템의 최적화)

  • Park, Keon-Jun;Lee, Dong-Yoon;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2567-2569
    • /
    • 2003
  • 본 논문은 비선형 시스템의 퍼지모델을 위해 정보 Granules 기반 퍼지추론 시스템 모델의 최적화를 제시한다. 퍼지모델은 주로 경험적 방법에 의해 추출되기 때문에 보다 구체적이고 체계적인 방법에 의한 동정 및 최적화 될 필요성이 요구된다. 제안된 규칙베이스 퍼지모델은 HCM 클러스터링 방법, 컴플렉스 알고리즘 및 퍼지추론 방법을 이용하여 시스템 구조와 파라미터 동정을 수행한다. 두 가지 형태의 퍼지모델 추론 방법은 간략추론, 선형추론에 의해 시행된다. 본 논문에서는 퍼지모델의 입력변수와 퍼지 입력 공간 분할 및 입출력 데이타의 중심값을 구해서 후반부 다항식함수에 의한 정보 Granules 기반 구조 동정과 파라미터 동정을 통해 비선형 시스템을 표현한다. 전반부 파라미터의 동정에는 HCM 클러스터링 방법과 컴플렉스 알고리즘을 사용하고, 후반부는 표준 HCM 클러스터링과 표준 최소자승법을 사용하여 동정한다. 그리고 학습 및 테스트 데이타의 성능견과의 상호균형을 얻기 위한 하중값을 가진 성능지수를 제시함으로써 근사화와 예측성능의 향상을 꾀한다. 제안된 비선형 모델의 성능평가를 통해 그 우수성을 보인다.

  • PDF

Genetic Design of Granular-oriented Radial Basis Function Neural Network Based on Information Proximity (정보 유사성 기반 입자화 중심 RBF NN의 진화론적 설계)

  • Park, Ho-Sung;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.436-444
    • /
    • 2010
  • In this study, we introduce and discuss a concept of a granular-oriented radial basis function neural networks (GRBF NNs). In contrast to the typical architectures encountered in radial basis function neural networks(RBF NNs), our main objective is to develop a design strategy of GRBF NNs as follows : (a) The architecture of the network is fully reflective of the structure encountered in the training data which are granulated with the aid of clustering techniques. More specifically, the output space is granulated with use of K-Means clustering while the information granules in the multidimensional input space are formed by using a so-called context-based Fuzzy C-Means which takes into account the structure being already formed in the output space, (b) The innovative development facet of the network involves a dynamic reduction of dimensionality of the input space in which the information granules are formed in the subspace of the overall input space which is formed by selecting a suitable subset of input variables so that the this subspace retains the structure of the entire space. As this search is of combinatorial character, we use the technique of genetic optimization to determine the optimal input subspaces. A series of numeric studies exploiting some nonlinear process data and a dataset coming from the machine learning repository provide a detailed insight into the nature of the algorithm and its parameters as well as offer some comparative analysis.

Granular Bidirectional and Multidirectional Associative Memories: Towards a Collaborative Buildup of Granular Mappings

  • Pedrycz, Witold
    • Journal of Information Processing Systems
    • /
    • v.13 no.3
    • /
    • pp.435-447
    • /
    • 2017
  • Associative and bidirectional associative memories are examples of associative structures studied intensively in the literature. The underlying idea is to realize associative mapping so that the recall processes (one-directional and bidirectional ones) are realized with minimal recall errors. Associative and fuzzy associative memories have been studied in numerous areas yielding efficient applications for image recall and enhancements and fuzzy controllers, which can be regarded as one-directional associative memories. In this study, we revisit and augment the concept of associative memories by offering some new design insights where the corresponding mappings are realized on the basis of a related collection of landmarks (prototypes) over which an associative mapping becomes spanned. In light of the bidirectional character of mappings, we have developed an augmentation of the existing fuzzy clustering (fuzzy c-means, FCM) in the form of a so-called collaborative fuzzy clustering. Here, an interaction in the formation of prototypes is optimized so that the bidirectional recall errors can be minimized. Furthermore, we generalized the mapping into its granular version in which numeric prototypes that are formed through the clustering process are made granular so that the quality of the recall can be quantified. We propose several scenarios in which the allocation of information granularity is aimed at the optimization of the characteristics of recalled results (information granules) that are quantified in terms of coverage and specificity. We also introduce various architectural augmentations of the associative structures.

Design of Granular-based Neurocomputing Networks for Modeling of Linear-Type Superconducting Power Supply (리니어형 초전도 전원장치 모델링을 위한 입자화 기반 Neurocomputing 네트워크 설계)

  • Park, Ho-Sung;Chung, Yoon-Do;Kim, Hyun-Ki;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1320-1326
    • /
    • 2010
  • In this paper, we develop a design methodology of granular-based neurocomputing networks realized with the aid of the clustering techniques. The objective of this paper is modeling and evaluation of approximation and generalization capability of the Linear-Type Superconducting Power Supply (LTSPS). In contrast with the plethora of existing approaches, here we promote a development strategy in which a topology of the network is predominantly based upon a collection of information granules formed on a basis of available experimental data. The underlying design tool guiding the development of the granular-based neurocomputing networks revolves around the Fuzzy C-Means (FCM) clustering method and the Radial Basis Function (RBF) neural network. In contrast to "standard" Radial Basis Function neural networks, the output neuron of the network exhibits a certain functional nature as its connections are realized as local linear whose location is determined by the membership values of the input space with the aid of FCM clustering. To modeling and evaluation of performance of the linear-type superconducting power supply using the proposed network, we describe a detailed characteristic of the proposed model using a well-known NASA software project data.