• 제목/요약/키워드: Fuzzy Inference Model

검색결과 421건 처리시간 0.035초

Type-2 FCM 기반 퍼지 추론 시스템의 설계 및 최적화 (Design of Type-2 FCM-based Fuzzy Inference Systems and Its Optimization)

  • 박건준;김용갑;오성권
    • 전기학회논문지
    • /
    • 제60권11호
    • /
    • pp.2157-2164
    • /
    • 2011
  • In this paper, we introduce a new category of fuzzy inference system based on Type-2 fuzzy c-means clustering algorithm (T2FCM-based FIS). The premise part of the rules of the proposed model is realized with the aid of the scatter partition of input space generated by Type-2 FCM clustering algorithm. The number of the partition of input space is composed of the number of clusters and the individual partitioned spaces describe the fuzzy rules. Due to these characteristics, we can alleviate the problem of the curse of dimensionality. The consequence part of the rule is represented by polynomial functions with interval sets. To determine the structure and estimate the values of the parameters of Type-2 FCM-based FIS we consider the successive tuning method with generation-based evolution by means of real-coded genetic algorithms. The proposed model is evaluated with the use of numerical experimentation.

A TSK fuzzy model optimization with meta-heuristic algorithms for seismic response prediction of nonlinear steel moment-resisting frames

  • Ebrahim Asadi;Reza Goli Ejlali;Seyyed Arash Mousavi Ghasemi;Siamak Talatahari
    • Structural Engineering and Mechanics
    • /
    • 제90권2호
    • /
    • pp.189-208
    • /
    • 2024
  • Artificial intelligence is one of the efficient methods that can be developed to simulate nonlinear behavior and predict the response of building structures. In this regard, an adaptive method based on optimization algorithms is used to train the TSK model of the fuzzy inference system to estimate the seismic behavior of building structures based on analytical data. The optimization algorithm is implemented to determine the parameters of the TSK model based on the minimization of prediction error for the training data set. The adaptive training is designed on the feedback of the results of previous time steps, in which three training cases of 2, 5, and 10 previous time steps were used. The training data is collected from the results of nonlinear time history analysis under 100 ground motion records with different seismic properties. Also, 10 records were used to test the inference system. The performance of the proposed inference system is evaluated on two 3 and 20-story models of nonlinear steel moment frame. The results show that the inference system of the TSK model by combining the optimization method is an efficient computational method for predicting the response of nonlinear structures. Meanwhile, the multi-vers optimization (MVO) algorithm is more accurate in determining the optimal parameters of the TSK model. Also, the accuracy of the results increases significantly with increasing the number of previous steps.

적응형 뉴로-퍼지(ANFIS)를 이용한 도시철도 시스템 위험도 평가 연구 (A Study on the Risk Assessment for Urban Railway Systems Using an Adaptive Neuro-Fuzzy Inference System(ANFIS))

  • 탁길훈;구정서
    • 한국안전학회지
    • /
    • 제37권1호
    • /
    • pp.78-87
    • /
    • 2022
  • In the risk assessment of urban railway systems, a hazard log is created by identifying hazards from accident and failure data. Then, based on a risk matrix, evaluators analyze the frequency and severity of the occurrence of the hazards, conduct the risk assessment, and then establish safety measures for the risk factors prior to risk control. However, because subjective judgments based on the evaluators' experiences affect the risk assessment results, a more objective and automated risk assessment system must be established. In this study, we propose a risk assessment model in which an adaptive neuro-fuzzy inference system (ANFIS), which is combined in artificial neural networks (ANN) and fuzzy inference system (FIS), is applied to the risk assessment of urban railway systems. The newly proposed model is more objective and automated, alleviating the limitations of risk assessments that use a risk matrix. In addition, the reliability of the model was verified by comparing the risk assessment results and risk control priorities between the newly proposed ANFIS-based risk assessment model and the risk assessment using a risk matrix. Results of the comparison indicate that a high level of accuracy was demonstrated in the risk assessment results of the proposed model, and uncertainty and subjectivity were mitigated in the risk control priority.

이접적 퍼지 정보를 지원하는 퍼지 객체 추론 모델의 정형화 (A Formal Specification of Fuzzy Object Inference Model for Supporting Disjunctive Fuzzy Information)

  • 양형정;양재동
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 2001년도 춘계학술대회논문집:21세기 신지식정보의 창출
    • /
    • pp.184-197
    • /
    • 2001
  • 본 논문에서는 이접적 퍼지 정보를 지원하는 퍼지 객체 추론 모델을 정형화하고, 이접적 퍼지 정보를 지원하는 지식기반 프로그래밍을 위한 구현으로서 ICOT(Integrated C-Object Tool)을 제안한다. 제안된 객체 추론 모델은 객체 추론과 퍼지 추론이 객체-관계형 데이터베이스와 호환성있는 일관된 틀로 병합 되어 있으며, 객체 지향 패러다임의 대부분이 관계형 구조로 표현되기 때문에, 의미적으로 이해하기 쉽고 개념적으로 사용하기 단순한 퍼지 추론을 지원한다. 또한 이접적 퍼지 정보를 지원함으로써 데이터의 의미적 표현력을 강화시킨다.

  • PDF

범용 실시간 퍼지 제어를 위한 시간형 퍼지 패트리넬 (A Timed Fuzzy Petri Net Model for General Purpose Real-time Fuzzy Control)

  • 이강수;김소연;윤정모
    • 한국정보처리학회논문지
    • /
    • 제3권3호
    • /
    • pp.543-563
    • /
    • 1996
  • 본 논문에서는 실시간 퍼지 제어를 위한 모형으로서 '시간형 퍼지 패트리넬(TFPN) 모형'을 제시한다. TFPN모형은 시간 패트리넬과 퍼지 패트리넬을 통합한 것으로서 퍼지 추론 뿐 아니라 퍼지 제어에 이용할 수 있다. 또한, 퍼지 제어 규칙의 구문적 명세 언어로서 '시간적 퍼지 제어 언어 '를 정의하고, 이를 TFPN으로 모형화하는 방법을 제시한다. TFPN모형은 퍼지 제어에 대한 패트리넬 포멀리즘에 해당하며 그 수행 규칙은 마킹(퍼지화)과정과 점화(추론 및 비퍼지화) 과정으로 구성된다. 제시된 모형의 사례 연구 결과, 기존의 퍼지제어 모형보다 추론 및 제어 값의 계산 시간을 절약할 수 있으며, 제어 시스템의 불확실성을 자연스럽게 모형화하고 제어규칙의 가시 성을 높일 수 있다.

  • PDF

신규사업의 성공판정을 위한 퍼지추론모형 (A Technology-based New Business Planning Model ; Fuzzy Inference Systems Approach)

  • 권철신;김태현
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2001년도 추계학술대회 논문집
    • /
    • pp.246-249
    • /
    • 2001
  • In this study we propose a technology selection model, which captures technology seeds for new business area by a fuzzy structural modeling method and then, design a model, which evaluates the validity of New Business Development plans for the selected technology seeds with regard to the properties of manufacturing, product, market, and economy as well. Finally, a fuzzy inference system is designed in order to decide the degree of success of New Business Development plans based on the preceding validity evaluation.

  • PDF

퍼지추론 기반 다항식 RBF 뉴럴 네트워크의 설계 및 최적화 (The Design of Polynomial RBF Neural Network by Means of Fuzzy Inference System and Its Optimization)

  • 백진열;박병준;오성권
    • 전기학회논문지
    • /
    • 제58권2호
    • /
    • pp.399-406
    • /
    • 2009
  • In this study, Polynomial Radial Basis Function Neural Network(pRBFNN) based on Fuzzy Inference System is designed and its parameters such as learning rate, momentum coefficient, and distributed weight (width of RBF) are optimized by means of Particle Swarm Optimization. The proposed model can be expressed as three functional module that consists of condition part, conclusion part, and inference part in the viewpoint of fuzzy rule formed in 'If-then'. In the condition part of pRBFNN as a fuzzy rule, input space is partitioned by defining kernel functions (RBFs). Here, the structure of kernel functions, namely, RBF is generated from HCM clustering algorithm. We use Gaussian type and Inverse multiquadratic type as a RBF. Besides these types of RBF, Conic RBF is also proposed and used as a kernel function. Also, in order to reflect the characteristic of dataset when partitioning input space, we consider the width of RBF defined by standard deviation of dataset. In the conclusion part, the connection weights of pRBFNN are represented as a polynomial which is the extended structure of the general RBF neural network with constant as a connection weights. Finally, the output of model is decided by the fuzzy inference of the inference part of pRBFNN. In order to evaluate the proposed model, nonlinear function with 2 inputs, waster water dataset and gas furnace time series dataset are used and the results of pRBFNN are compared with some previous models. Approximation as well as generalization abilities are discussed with these results.

Computation of daily solar radiation using adaptive neuro-fuzzy inference system in Illinois

  • Kim, Sungwon
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.479-482
    • /
    • 2015
  • The objective of this study is to develop adaptive neuro-fuzzy inference system (ANFIS) model for estimating daily solar radiation using limited weather variables at Champaign and Springfield stations in Illinois. The best input combinations (one, two, and three inputs) can be identified using ANFIS model. From the performance evaluation and scatter diagrams of ANFIS model, ANFIS 3 (three input) model produces the best results for both stations. Results obtained indicate that ANFIS model can successfully be used for the estimation of daily global solar radiation at Champaign and Springfield stations in Illinois. These results testify the generation capability of ANFIS model and its ability to produce accurate estimates in Illinois.

  • PDF

데이터 정보입자 기반 퍼지 추론 시스템의 최적화 (Optimization of Fuzzy Inference Systems Based on Data Information Granulation)

  • 오성권;박건준;이동윤
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권6호
    • /
    • pp.415-424
    • /
    • 2004
  • In this paper, we introduce and investigate a new category of rule-based fuzzy inference system based on Information Granulation(IG). The proposed rule-based fuzzy modeling implements system structure and parameter identification in the efficient form of “If..., then...” statements, and exploits the theory of system optimization and fuzzy implication rules. The form of the fuzzy rules comes with three types of fuzzy inferences: a simplified one that involves conclusions that are fixed numeric values, a linear one where the conclusion part is viewed as a linear function of inputs, and a regression polynomial one as the extended type of the linear one. By the nature of the rule-based fuzzy systems, these fuzzy models are geared toward capturing relationships between information granules. The form of the information granules themselves becomes an important design features of the fuzzy model. Information granulation with the aid of HCM(Hard C-Means) clustering algorithm hell)s determine the initial parameters of rule-based fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial function being used in the Premise and consequence Part of the fuzzy rules. And then the initial Parameters are tuned (adjusted) effectively with the aid of the improved complex method(ICM) and the standard least square method(LSM). In the sequel, the ICM and LSM lead to fine-tuning of the parameters of premise membership functions and consequent polynomial functions in the rules of fuzzy model. An aggregate objective function with a weighting factor is proposed in order to achieve a balance between performance of the fuzzy model. Numerical examples are included to evaluate the performance of the proposed model. They are also contrasted with the performance of the fuzzy models existing in the literature.

Optimal Fuzzy Models with the Aid of SAHN-based Algorithm

  • Lee Jong-Seok;Jang Kyung-Won;Ahn Tae-Chon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권2호
    • /
    • pp.138-143
    • /
    • 2006
  • In this paper, we have presented a Sequential Agglomerative Hierarchical Nested (SAHN) algorithm-based data clustering method in fuzzy inference system to achieve optimal performance of fuzzy model. SAHN-based algorithm is used to give possible range of number of clusters with cluster centers for the system identification. The axes of membership functions of this fuzzy model are optimized by using cluster centers obtained from clustering method and the consequence parameters of the fuzzy model are identified by standard least square method. Finally, in this paper, we have observed our model's output performance using the Box and Jenkins's gas furnace data and Sugeno's non-linear process data.