• Title/Summary/Keyword: Fuzzy Engine

Search Result 199, Processing Time 0.03 seconds

Fuzzy Control of Speed Ratio for Electro-Hydraulic Rig Type CVT (전자 유압식 리그형 CVT의 변속비 퍼지제어)

  • Kim, S.H.;Kim, K.W.;Kim, H.S.;Eun, T.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.3
    • /
    • pp.63-73
    • /
    • 1993
  • In this paper, fuzzy control algorithm for the speed ratio control of the electro-hydraulic rig type continuously variable transmission(CVT) was proposed and the CVT performance tests were carried out for the optimal operation of the engine simulator. The experimental results for the constant throttle and the acceleration modes showed that the engine can be run on the optimum operating line, representing the power and economy mode, by the fuzzy control of the CVT speed ratio. Comparing the PID control with the fuzzy control, it was found that the fuzzy control showed better performance with the faster rising time and smaller steady state error. The result of this study can be used as basic design materials for developing the transmission control unit of the CVT.

  • PDF

Implementation of Adaptive Impedance Controller using Fuzzy Inference (퍼지추론을 이용한 적응 임피던스 제어기의 구현)

  • Lim, Yong-Taek;Kim, Seung-Woo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.9
    • /
    • pp.423-429
    • /
    • 2001
  • This paper proposes adaptive impedance control algorithm using fuzzy inference when robot contacts with its environments. The characteristics of the adaptive impedance controller is to adapt with parametric uncertainty and nonlinear conditions. The control algorithm is to join impedance controller with fuzzy inference engine. The proposed control method overcomes the problem of impedance controller using gain-tuning algorithm of fuzzy inference engine. We implemented an experimental set-up consisting of environment-generated one-link robot system and DSP system for controller development. We apply the adaptive fuzzy impedance controller to one-link root system, and it shows the good performance on regulating the interactive force in case of contacting with arbitrary environment.

  • PDF

A study on the fault and diagnosis system for diesel engine using neural network and knowledge based fuzzy inference (뉴럴 네트웍과 지식 기반 퍼지 추론을 이용한 디젤기관 고장진단 시스템에 관한 연구)

  • 천행춘;김영일;김경엽;안순영;오현경;유영호
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.233-238
    • /
    • 2002
  • This paper propose the construction of fault diagnosis engine for diesel generator engine and rule inference method to induce rule for fuzzy inference from the monitored data of diesel engine. The proposed fault diagnosis system is constructed the Malfunction Diagnosis Engine(MDE) and Hierarchy of Malfunction Hypotheses(HME), It is Proposed the rule reduction method of knowledge base for concerning data among the various analog data.

  • PDF

Design of Controllers for the Stable Idle Speed in the Internal Combustion Engine

  • Lee, Young-Choon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.54-60
    • /
    • 2001
  • This paper deals with control design method having anticipation delay which is proposed for the discrete nonlinear engine where system dynamics is not accurate. Due to the induction-to-power delay in internal combustion(IC) engine having abrupt torque loss, underdamping and chattering in engine idle speed becomes a serious problem and it could make drivers uncomfortable. For this reason, Three types of the closed-loop controller are developed for the stable engine idle speed control. The inputs of the controllers are an engine idle speed and air conditioning signal. The output of the controllers is an duty cycle to operate the idle speed control valve(ISCV). The proposed controllers will be useful for improving actual vehicles since these shows good test

  • PDF

Idle Speed Control of Automotive Engine using Fuzzy Logic (퍼지논리를 이용한 자동차 엔진의 공회전 속도 제어)

  • 장재호;김병국
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.6
    • /
    • pp.53-62
    • /
    • 1994
  • In this paper, a fuzzy logic-based idle speed controller is designed for automotive engine with a purpose of high efficiency and low pollution. When the idle speed is low engine operation is not smooth, otherwise fuel consumption is incresed. Therefore the idle speed must be maintained as low as possible within the scope that ensures smooth operation of engine. By simulation, we show that the idle speed controller has generated a proper control signal as engine condition or enviornment varies, and also operated well for unexpected cases. Also, an engine simulator, which is used as a basic tool for controller design, is developed and utilized for reduction of development time and cost.

  • PDF

Design of PID Type Fuzzy Logic Acceleration Controller for Turbojet Engine Using High-gain Observer (고이득 관측기를 이용한 터보제트 엔진의 PID 퍼지 추론 가속도 제어기 설계)

  • Jie, Min-Seok;Kim, Dae-Gi;Hong, Gyo-Young;Ahn, Dong-Man;Hong, Seung-Beom
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.1
    • /
    • pp.107-114
    • /
    • 2013
  • In this paper, we propose controller to control the acceleration of unmanned aircraft turbojet engine. The high-gain observer to estimate the rotational speed of compressor is used, and the turbojet engine controller applying fuzzy heuristic techniques and PID control algorithm are designed. fuzzy PID controller produces the flow control input to prevent the surge and flame-out phenomena at the acceleration and deceleration of the turbojet engine. The standard acceleration is set and the fuel flow control is defined by the fuzzy heuristic. Computer simulations are performed using MATLAB in order to verify the performance of the proposed controller.

Development of Maneuvering Simulator for PERESTROIKA Catamaran using Fuzzy Inference Technique

  • Lee, Joon-Tark;Ji, Seok--Jun;Choi, Woo--Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.192-199
    • /
    • 2004
  • Navigation simulators have been used in many marine schools and manne training centers since the early 1960's. But these simulators were very expens~ve and were almost limited only in one engine system. In this paper, a catamaran with twin engine system. controlled by two remote control levers and its economic simulator based on a personal computer shall be introduced. One of the main features of catamaran is to control variously its progressing direction. In the static state, a catamaran can move into all the directions and in the dynamic state, ship can change immediately the heading and speed. Although a good navigator can skillfully operate one engine system, it is difficult to control smoothly the catamaran of twin engine system without any threat for the safety of passengers. Thus. in order to bring up the expert navigators. the development of a simulator which makes the training effective is necessary, Therefore, in this paper, a Fuzzy Inference Technique based Maneuvering Simulator for catamaran with twin engine system was developed. In general. in order to develop a catamaran simulator for effective training, first of all. its mathematical model must be acquired. According to the acquired system modeling. the dynamics of simulator is determined, But the proposed technique can omit a complex and tedious mathematical modeling procedures by using the fuzzy inference, which dependent upon only experiences of an expert and can design an efficient training program for unskillful navigators. This developed simulator was consisted of two fuzzy inference routines and two remote control levers, and was focused on effective training of navigators for the safe maneuvering to avoid a collision in a harbor.

Study of engine oil replacement times estimate method using fuzzy and neural network algorithm (퍼지 및 신경망 알고리즘을 이용한 엔진오일 교환 시기 예측 방법에 관한 연구)

  • Nam, Sang-Yep;Hong, You-Sik;Kim, Cheon-Shik
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.4
    • /
    • pp.15-20
    • /
    • 2005
  • If we can forecast the replacement time of engine oil, we extend the life-time of our engine and increase the continued ratio. But, the replacement times of engine oil is influenced by the following elements: the distance that cars or vehicles travel, vehicles that run a short range, types of engine oil etc. that run a long distance. In this paper, We forecast engine oil replacement times by using fuzzy neural network algorithm. This algerian uses the data of distance covered, color of engine oil etc. Through a sequence of simulation, the exchange system of intelligence style engine oil decides on the replacement times of engine oil quite accurately. Therefore, We expect vehicles to become more convenient if the above algorithm is a lied to the present types of cars.

A Causal Knowledge-Driven Inference Engine for Expert System

  • Lee, Kun-Chang;Kim, Hyun-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.6
    • /
    • pp.70-77
    • /
    • 1998
  • Although many methods of knowledge acquisition has been developed in the exper systems field, such a need form causal knowledge acquisition hs not been stressed relatively. In this respect, this paper is aimed at suggesting a causal knowledge acquisition process, and then investigate the causal knowledge-based inference process. A vehicle for causal knowledge acquisition is FCM (Fuzzy Cognitive Map), a fuzzy signed digraph with causal relationships between concept variables found in a specific application domain. Although FCM has a plenty of generic properties for causal knowledge acquisition, it needs some theoretical improvement for acquiring a more refined causal knowledge. In this sense, we refine fuzzy implications of FCM by proposing fuzzy causal relationship and fuzzy partially causal relationship. To test the validity of our proposed approach, we prototyped a causal knowledge-driven inference engine named CAKES and then experimented with some illustrative examples.

  • PDF

FUZZY TORQUE CONTROL STRATEGY FOR PARALLEL HYBRID ELECTRIC VEHICLES

  • PU J.-H.;YIN C.-L.;ZHANG J.-W.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.529-536
    • /
    • 2005
  • This paper presents a novel design of a fuzzy control strategy (FCS) based on torque distribution for parallel hybrid electric vehicles (HEVs). An empirical load-regulating vehicle operation strategy is developed on the basis of analysis of the components efficiency map data and the overall energy conversion efficiency. The aim of the strategy is to optimize the fuel economy and balance the battery state-of-charge (SOC), while satisfying the vehicle performance and drivability requirements. In order to accomplish this strategy, a fuzzy inference engine with a rule-base extracted from the empirical strategy is designed, which works as the kernel of a fuzzy torque distribution controller to determine the optimal distribution of the driver torque request between the engine and the motor. Simulation results reveal that compared with the conventional strategy which uses precise threshold parameters the proposed FCS improves fuel economy as well as maintains better battery SOC within its operation range.