In this study, we proposed the fuzzy modeling method and designed a model-based logic controller for Activated and Sludge Process(A.S.P.) in sewage treatment. The identification of the structure of fuzzy implications is carreid out by use of fuzzy c-means clustering algorithm. And to identify the parameters of fuzzy implications, we used the complex and the least square method. To tune the premise parameters automatically the complex method is implemented. The model-based fuzzy controller is designed by rules generated from the identified A.S.P. fuzzy model. The feasibility of the proposed approach is evaluated through the identification of the fuzzy model to describe an input-output relation of the A.S.P.. The performance of identified model-based fuzzy controller is evaluated through the computer simulations.
Journal of the Institute of Convergence Signal Processing
/
v.8
no.3
/
pp.185-191
/
2007
Remote sensing images are multispectral image data collected from several band divided by wavelength ranges. The classification of remote sensing images is the method of classifying what has similar spectral characteristics together among each pixel composing an image as the important algorithm in this field. This paper presents a pattern classification method of remote sensing images by applying a possibilistic fuzzy c-means (PFCM) algorithm. The PFCM algorithm is a hybridization of a FCM algorithm, which adopts membership degree depending on the distance between data and the center of a certain cluster, combined with a PCM algorithm, which considers class typicality of the pattern sets. In this proposed method, we select the training data for each class and perform supervised classification using the PFCM algorithm with spectral signatures of the training data. The application of the PFCM algorithm is tested and verified by using Landsat TM and IKONOS remote sensing satellite images. As a result, the overall accuracy showed a better results than the FCM, PCM algorithm or conventional maximum likelihood classification(MLC) algorithm.
The paper concerns the hybrid optimization of fuzzy inference systems that is based on Hierarchical Fair Competition-based Parallel Genetic Algorithms (HFCGA) and information data granulation. The granulation is realized with the aid of the Hard C-means clustering and HFCGA is a kind of multi-populations of Parallel Genetic Algorithms (PGA), and it is used for structure optimization and parameter identification of fuzzy model. It concerns the fuzzy model-related parameters such as the number of input variables to be used, a collection of specific subset of input variables, the number of membership functions, the order of polynomial, and the apexes of the membership function. In the hybrid optimization process, two general optimization mechanisms are explored. Thestructural optimization is realized via HFCGA and HCM method whereas in case of the parametric optimization we proceed with a standard least square method as well as HFCGA method as well. A comparative analysis demonstrates that the proposed algorithm is superior to the conventional methods.
In clustering for image segmentation, large amount of computation and typical segmentation errors have been important problems. In the paper, we suggest a new method for minimizing these problems. Markers in marker-controlled watershed transform represent segmented areas because they are starting-points of extending areas. Thus, clustering restricted by marker pixels can reduce computational complexity. In our proposed method, the markers are selected by Gabor texture energy, and cluster information of them are generated by FCM (fuzzy c-mean) clustering. Generated areas from watershed transform are merged by using cluster information of markers. In the test of Brodatz' texture images, we improved typical partition-errors obviously and obtained less computational complexity compared with previous FCM clustering algorithms. Overall, it also took regular computational time.
The Transactions of The Korean Institute of Electrical Engineers
/
v.59
no.2
/
pp.436-444
/
2010
In this study, we introduce and discuss a concept of a granular-oriented radial basis function neural networks (GRBF NNs). In contrast to the typical architectures encountered in radial basis function neural networks(RBF NNs), our main objective is to develop a design strategy of GRBF NNs as follows : (a) The architecture of the network is fully reflective of the structure encountered in the training data which are granulated with the aid of clustering techniques. More specifically, the output space is granulated with use of K-Means clustering while the information granules in the multidimensional input space are formed by using a so-called context-based Fuzzy C-Means which takes into account the structure being already formed in the output space, (b) The innovative development facet of the network involves a dynamic reduction of dimensionality of the input space in which the information granules are formed in the subspace of the overall input space which is formed by selecting a suitable subset of input variables so that the this subspace retains the structure of the entire space. As this search is of combinatorial character, we use the technique of genetic optimization to determine the optimal input subspaces. A series of numeric studies exploiting some nonlinear process data and a dataset coming from the machine learning repository provide a detailed insight into the nature of the algorithm and its parameters as well as offer some comparative analysis.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.49
no.3
/
pp.82-89
/
2012
This paper presents the intelligent tracking algorithm for maneuvering target using the positional error compensation of the maneuvering target. The difference between measured point and predict point is separated into acceleration and noise. Fuzzy c-mean clustering and predicted impact point are used to get the optimal acceleration value. The membership function is determined for acceleration and noise which are divided by fuzzy c-means clustering and the characteristics of the maneuvering target is figured out. Divided acceleration and noise are used in the tracking algorithm to compensate computational error. The filtering process in a series of the algorithm which estimates the target value recognize the nonlinear maneuvering target as linear one because the filter recognize only remained noise by extracting acceleration from the positional error. After filtering process, we get the estimates target by compensating extracted acceleration. The proposed system improves the adaptiveness and the robustness by adjusting the parameters in the membership function of fuzzy system. To maximize the effectiveness of the proposed system, we construct the multiple model structure. Procedures of the proposed algorithm can be implemented as an on-line system. Finally, some examples are provided to show the effectiveness of the proposed algorithm.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
v.9
no.2
/
pp.403-407
/
2005
자궁 경부 세포진 영상의 핵 영역 분할은 자궁 경부암 자동화 검색 시스템의 가장 어렵고도 중요한 분야로 알려져 있다. 본 논문에서는 자궁 경부 세포진 영상에서 HSI 모델을 이용하여 세포진 핵 영역을 추출한다. 추출된 세포진 핵 영역은 형태학적 정보(morphometric feature)와 명암 정보(densitometric feature), 색상 정보(colorimetric feature), 질감 정보(textural features)를 분석하여 핵의 특징을 추출한다. 또한 Bethesda System에서의 분류 기준에 따라 핵의 분류 기준을 정하고 추출된 핵의 특징들을 퍼지 c-Means 클러스터링 알고리즘에 적용하여 실험한 결과, 제안된 방법이 자궁 세포진 핵 추출과 인식에 있어서 효율적임을 확인하였다.
본 논문에서는 연결수락 제어시 사용자가 전송하는 트래픽 파라메타(샐 개수의 분산값과 평균값)를 압축하여 망에 신고하는 방법을 제안하고, 압축방법에 의한 연결수락제어의 성능을 분석 비교한다. 트래픽 파라메타 압축방법은 K-means, CL(Competitive Learning), Fuzzy ISODATA,FNC(Fuzzy Neural Clustering)를 사용한다. 제안한 트래픽 파라메타의 압축에 의한 연결수락제어는 퍼지 매핑함수(Fuzzy Mapping Funciton)fp 의해 신고한 트래픽 패턴을 추정하고, 전방향 구조의 신경망을 사용하여 연결의 수락/거절을 결정한다. ON-OFF 트래픽 모델 환경에서 컴퓨터 실험을 통하여 여러 가지 압축방법들을 사용한 연결수락제어의 성능을 Fuzziness 값에 따라 비교하였고, 그 결과 FNC 방법이 우수함을 알 수 있었다. EH한 연결수락제어의 성능을 높히기 위해서 관측 프레임의 셀 분산값이 크면 Fuzziness 값을 작게 선정하고, 작으면 상대적으로 크게 선정해야 함을 알 수 있었다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2003.09a
/
pp.476-479
/
2003
The Rough transform (HT) is often used for extracting global features in binary images, for example curve and line segments, from local features such as single pixels. The HT is useful due to its insensitivity to missing edge points and occlusions, and robustness in noisy images. However, it possesses some disadvantages, such as time and memory consumption due to the number of input data and the selection of an optimal and efficient resolution of the accumulator space can be difficult. Another problem of the HT is in the difficulty of peak detection due to the discrete nature of the image space and the round off in estimation. In order to resolve the problem mentioned above, a possibilistic C-means approach to clustering [1] is used to cluster neighboring peaks. Several experimental results are given.
To increase building change recognition accuracy, we present a deep learning-based building change detection using remote sensing images. In the proposed approach, by merging pixel-level and object-level information of multitemporal remote sensing images, we create the difference image (DI), and the frequency-domain significance technique is used to generate the DI saliency map. The fuzzy C-means clustering technique pre-classifies the coarse change detection map by defining the DI saliency map threshold. We then extract the neighborhood features of the unchanged pixels and the changed (buildings) from pixel-level and object-level feature images, which are then used as valid deep neural network (DNN) training samples. The trained DNNs are then utilized to identify changes in DI. The suggested strategy was evaluated and compared to current detection methods using two datasets. The results suggest that our proposed technique can detect more building change information and improve change detection accuracy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.